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FOI_WORD

The typical few-of-a-kind nature of NASA systems has made reliability a premi_n

en on the initial items delivered in a program. Reliability defined and treated on

basis of percentage of items operating successfully has much less meaning than

aen larger sample sizes are available as in military and commercial products. Relia-

ility thus becomes based more on engineering confidence that the item will work as

intended. The key to reliability is thus good englneerlng--deslgning reliability

into the system and engineering to prevent degradation of the deslgned-in reliability

from fabrication, testing and operation.

The PRACTICAL RELIABILITY series of reports is addressed to the typical engineer

to aid his comprehension of practical problems in engineering for reliability. In

these reports the intent is to present fundamental concepts on a particular subject in

an interesting, mainly narrative form and make the reader aware of practical problems

in applying them. There is little emphasis on describing procedures and how to

implement them. Thus there is liberal use of references for both background theory

and cookbook procedures. The present coverage is limited to five subject areas:

Vol. I. - Parameter Variation Analysis describes the techniques for treating

the effect of system parameters on performance, reliability, and other figures-

of-merlt.

Vol. II. - Computation considers the digital computer and where and how it can

be used to aid various reliability tasks.

Vol. III.- Testing describes the basic approaches to testing and emphasizes

the practical considerations and the applications to reliability.

Vol. IV. - Prediction presents mathematical methods and analysis approaches

for reliability prediction and includes some methods not generally covered in

texts and handbooks.

Vol. V. - Parts reviews the processes and procedures required to obtain and

apply parts which will perform their functions adequately.

These reports were prepared by the Research Triangle Institute, Research Triangle

Park, North Carolina 27709 under NASA Contract NASw-1448. The contract was adminis-

tered under the technical direction of the Office of Reliability and Quality

Assurance, NASA Headquarters, Washington, D. C. 20546 with Dr. John E. Condon,

Director, as technical contract monitor. The contract effort was performed Jointly

by personnel from both the Statistics Research and the Engineering and Environmental

Sciences Divisions. Dr. R. M. Burger was technical director with W. S. Thompson

serving as project leader.
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This report is Vol. IV - Prediction. This subject has been of interest in

reliability work since the earliest efforts of organized reliability activity. In

these ensuing years much has been written on reliability prediction, but often the

item concentrates on limited facets of the subject. This report synthesizes

reliability prediction, with emphasis on the basics and the scope. C. A. Krohn

selected and organized the contents, and together with A. C. Nelson, Jr. prepared

the material. W. S. Thompson provided helpful comments.
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ABSTRACT

Thefeatures andtechniques of reliability prediction are identified andbrought
together in this report. Theapproachis to:

(a) Bring together scattered material,
(b) Present somematerial not in booksor handbooks,
(c) Identify several points which have a tendency to be missed,

(d) Present some ideas which may be helpful to others involved in develop-

ment of reliability prediction techniques, and

(e) Express some opinions related to the role of reliability prediction.

Material presented in this report is grouped into four major categories.

Part I is largely qualitative discussion concerned with introduction and perspective.

Contents include discussion and opinions on the role of reliability prediction, on

perspective features_ e.g. program phase and hardware level, on the relation to other

analyses, and on the problems. Part II is concerned with reliability measures or

definitions concerning single items, including data sources. Part III is devoted to

the reliability prediction techniques which are suitable for general use and to

classical reliability models. This material is scattered throughout the references;

the treatment here mainly identifies approaches and relates them, with

reliance on the references. Included for multi-item models are logic, lifetime,

environment and bound-crossing topics. The remaining Part IV is concerned with

concepts related to the detailed treatment of failure modes without independence

assumptions. This is food-for-thought material from the results of research on

reliability prediction techniques. This material in Part IV, in general, is not

suited for widespread application. The Appendix presents a ready-reference on some

basic probability laws and on various probability distributions.
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In this report the subject of reliability prediction is synthesized. It is

an attempt to "see the forest", but done while keeping both feet on the ground.

Fundamentals are stressed in order to help develop a better understanding of what is

involved. Expanded treatment is given to basic reliability measures, to some points

which have a tendency to be somewhat misunderstood in the literature, and to several

topics which are not covered in existing books and handbooks but where RTI has delved

into them. Other topics are identified and related to one-another.

Reliability prediction as an organized discipline is approximately 15 years

old. There are approximately a dozen books on the subject and approximately the same

number of handbooks. There are many hundreds of reports and papers. Some which

treat the fundamentals will be relied on heavily.

The qualitative discussion of Part I on the scope of reliability prediction is

suitable for any reader - design engineer, manager, reliability generalist, or

reliability analyst. Parts II and III cover mainly conventional and classical

approaches to reliability prediction and Part IV reports on some research on struc-

turing certain detail into a prediction. Parts II, III and IV will not be easy reading

for persons who are not knowledgeable in the mathematics of probability. Of course

perusing these parts will give any reader a flavor of the subject. If a reader

wants to understand the subject he will have to study the material as introduced here

and as elaborated in the references. If he does not know the mathematics of probabilitl

then he will first need to learn its fundamentals. The practicing reliability analyst

should be familiar with most of the contents. For him, perhaps the manner in which

the material is organized, the identification of references, and the results of

research on reliability prediction techniques in Part IV will be of interest.
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Part I: Perspective

Reliability is the moniker which has been attached to those questions concerning

whether or not an item will perform its intended function when it is ultimately used.

Different ways of expressing a reliability index will be described later; some of the

more common are mean time between failure, reliability, or failure rate. Reliability

is different from traditional performance concerning explicit quantitative require-

ments; a reliability requirement can be avoided by Just not introducing it. As long

as the resultant item has subjectively acceptable reliability, then there is no concern.

On the other hand, if the item turns out to be excessively failure prone, "What went

wrong?" There was no requirement...there was no analysis...there was no measurement,

even if this last task was plausible.

The current tendency is to treat this question quantitatively to the maximum

extent which is "sensible;" otherwise the risk of unacceptable reliability is higher

than is necessary. When either the initial requirements for an item are being pre-

pared or are being responded to, they will typically contain a reliability index.

Treating reliability quantitatively brings the subject into open consideration. By

explicitly treating reliability the designers will think about what is needed to

fulfill the requirement. This considerably enhances the odds of getting something

useful and on schedule.

Even if an individual or a designer is not convinced of the need for quantita-

tive treatment of reliability, he still cannot avoid the subject nor the need for

some knowledge of it. When the designer is associated with the organization which

will actually use the item, often the management pressure for a minimum total owner-

ship cost compels quantitative reliability analysis by procedural requirements. When

the designer is associated with an organization which is providing items to customer

requirements, then there will usually be a quantitative reliability requirement and

less often a specified procedure for measuring reliability. The pressure of this

contractual requirement may be further increased if the contract is fixed price or

has a fee incentive for measured reliability.

In the early days of an engineering project the situation is such that treatment

of chance is with probabilistic modeling. As the new designs evolve into physical

items and measurements are made from testing, the situation changes into one where

the treatment of chance is also with statistical inference. The material presented

in this report is probabilistic. Measurement of reliability and the use of statisti-

cal inference is given some coverage in Vol. III - Testing of this Report Series.



i. Treating Reliability Quantitatively
This section contains somedefinitions and discussion of the role, usesand

accuracyof reliability prediction.

i.i NASADefinition of Reliability
Reliability is defined in NASAReliability Publication NPC250-1as: the proba-

bility that a system, subsystem,componentor part will perform its intended functions
under defined conditions at a designatedtime for a specified operating period [Ref. i].
This definition will be usedin this report. In the discussions the system,subsystem,
component,or part will simply be referred to as a systemor an item. Whenitem
is used, the material under discussion is potentially pertinent to any hardwarelevel
of aggregation. Multi-item or systemwill be used for bringing items together.

1.2 Probabilistic Approach
Reliability, in the quantitative senseas usedhere, is defined aboveas a

probability. Perhapsanother quantitative definition of reliability will evolve
in the future which is not basedon probabilistic concepts. For the present, however,
it seemsthat quantitative treatment of reliability will involve probability and
statistical inference. In one sense, this is unfortunate, as manyengineersand

managershavenot hadmeaningful academicor other exposureto this subject. The
subject is nomoredifficult than other onesof mathematics,but as with the other
ones, it doestake continued exposureto it over a period of time in order to be
comfortable and confident with it.

Thematerial in this report relies on the basic probability conceptsand laws
which are briefly reviewedin the Appendix. Thereader is encouragedto review them
and, if this is newmaterial to study the references of the Appendixor other modern
bookson probability. In particular, the plea is madeto avoid whatseemsto be
a tendencyto pick-up a few formulas suchas somefrom Parts II and III and to over-
generalize their applicability. Rather, rely moreon the fundamentalsof the Appendix.
To the engineers, do not be hesitant about seekingconsultation from a probabilistic
mathematicianor a statistician.

The terms probability and statistical inference wereused in the preceding
paragraph. Probability is used in reference to an a priori situation, whereassumptions
are madeconcerningthe probability descriptions of input information. Probability
predicts the outcomefrom a set of assumptions. Statistical inference is usedin
reference to an a posteriori situation, wheredata is usedto makeinferences about
the form of the distribution and to makeestimates about the parametersof the distri-
bution. Thus, probability is deductive andstatistics is inductive.
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1.3 Role

Reliability predictions may be performed for any of the following reasons:

(i) Potential technical contribution,

(2) Financial implications, and

(3) Compulsory.

Each of these could apply to the user (or buyer) of a system as well as to the supplier.

The potential technical contribution is the most satisfying reason to the engineer.

For example, he may decide to search for areas needing reliability improvement. How-

ever, the other reasons do occur. Financial implications arise in a fixed price or

incentive contract which also has an associated reliability requirement and method

of measurement. The compulsory reason may typically apply to a government agency

because of policy and to a supplier because of contract requirements. There is nothing

derogatory about any of these reasons; each has a role in the mature blending of tech-

nology, competition, and checks and balances.

1.4 Uses

Major uses of reliability prediction are:

(i) To obtain a numerical value of a reliability index,

(2) To obtain a numerical measure of uncertainty of the reliability prediction

value,

(3) To search for needed improvements in the design or the operational procedure,

(4) To allocate total system reliability optimally to the sub-items.

The numerical reliability prediction number and its attendant measure of uncertainty

are usually necessary in order to respond to any of the reasons for performing a pre-

diction which are noted above. That is, response to such questions as "Can the

mission be achieved?" or "What are the possibilities of making a profit?" or simply

here is what the customer asked for. Searching for reliability improvements and

probing around for weaknesses in the design and the operational procedure is the most

technically appealing use. It is this use that often results in a reliability pre-

diction going into more detail than it otherwise might. That is, comparative detailed

values are sought rather than absolute gross values. Hopefully new alternatives will

be opened up and the really bad choices can be eliminated. Literal optimization tech-

niques, such as dynamic programming algorithms, offer the potential of improved allo-

cation of overall reliability among the items comprising the system. Of these uses,

obtaining the prediction number and searching for improvements have seen more appli-

cation than the other two.

1.5 Accuracy

With the extensive experience accumulated with reliability prediction, it is



nowpossible to makesomeintelligent judgmentson accuracyeven if only qualitative.
Whenthere is a fair amountof historical data and the equipmentis not excessively

complexor new, a crude rule-of-thumb for electronic equipmentwouldbe to expect
the actual meantime betweenfailure (MTBF)to be within the rangeof 50 to 200 percent
of the predicted MTBF. This accuracywould apply to the caseof an experiencedanalyst
makinghis best effort, i.e., onewhich is not unduly optimistic or pessimistic.
At the equipmentlevel and the parts level, it is often possible to give the most
accurate prediction possible with only a small amountof effort. That is, the point
of diminishing returns is quickly reachedin reliability predictions as far as the
accuracyof the prediction numberis concerned. It mustbe noted that the prediction
analysis will usually go into moredetail in searching for reliability improvements.
If the inputs, the tools, and the assumptionsof the reliability predictions are
reasonably accurate andunderstood, then there is no reasonwhy the results should
not be able to be appraised so that the prediction canbe intelligently used.

Thecompetitive nature of the buyer-seller environmentquite understandably
has an influence on the accuracyof reliability prediction. There is probably a
tendencyto get moreaccurate predictions_ at least moreconservative ones, if there
exists a firm reliability requirement, a methodof reliability measurement,and firm
dollar implications. Thosewhouse rellability predictions of others, e.g. those
at higher levels of systemaggregation, must realize that those at the lower levels
will tend to present predictions which will makethe suppller look best at the time
the prediction is made. That is, the equipmentsupplier will often not account for
roughhandling, for unverified failures on the part of the operators, for unforeseen
environments,or possibly for burn-in. A final remarkon the accuracyof reliability
prediction is the realization that other systemcharacteristics suchas cost, schedule,
repair time, or evenperformancetend to haveinaccurate predictions at the early
stages in the life cycle. As the programprogresses through the life cycle there
is an opportunity to measuresomeof these characteristics, whereasreliability may
never really be able to be accurately measured.
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2. Prediction andAllied Approaches
In this section the classical reliability prediction techniques and those which

are suitable for active programusageare briefly identified by key words. Also,
selection of a particular technique and other analyses related to reliability prediction
are briefly discussed. Parts II and III of this report will give further introduction
to the reliability prediction techniqueswhich are only cited here. Thepurpose
is to identify reliability predictions approachesand to fit theminto related analyses.

2.1 Prediction Techniques
Figure 2-1 showskey wordsassociatedwith reliability measuresof single items

and Fig. 2-2 does the samefor the conventional and classical reliability prediction
modelingapproachesfor multi-item systems. Thesections of this report wherethe
topic is coveredare cited on the figures. Broadly speaking, the single item measures
of Fig. 2-1 can apply to various levels of systemaggregation, e.g., parts,
equipment,andsystemlevels as well as to humanevents. That is, they offer indices

by which to describe someof the inputs to a multi-item reliability prediction and
by which to express someof the outputs.

Reliability predictions implementedwith the approachesof Figs. 2-1 and 2-2
have typical assumptionsand characteristics. Quite often these are unstated; they
are Just implied. Sometypical assumptionsand characteristics are:

(I) A "fuzzy" definition of the failure of items and system, is it: Out of
specification? Simply inoperative? Completecatastrophic failure?

(2) Theprediction usually considers eachitem involved to have two states,
either goodor bad. In most predictions this is reasonable; however,
there are certain situations wherethis can lead to grossly incorrect
results. A familiar exampleis ignoring the two failed states of open
or short of diodes in redundantarrangements.

(3) Independenceamongitems is liberally assumed. Included here is the
impact of not considering uncertainty in the natural or inducedenviron-
ments.

(4) Prediction is for a mature product. A prediction is quite often mute
on the assumptionthat most design andmanufacturing"goofs" havebeen
removedand that the necessaryburn-in period has beenpassed. This has
serious implications for items suchas those intended for spacewhich
are producedin small quantity.

(5) Omissionof the humanelementduring operation.
(6) Uncertainty in the parametersof single items are often not considered

explicitly. Techniquesof sensitivity analysis and of probabilistic
treatment of uncertainty are potentially applicable.

5
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Of course, exceptions in particular predictions will exist for these typical assump-

tions and characteristics. These apply to the majority, not the exceptional case.

2.2 Prediction Technique Choice

The approach used for a particular prediction is influenced by a myriad of

factors. Implications of some factors such as the commodity and its intended opera-

tional profile tend to be somewhat apparent. Here the need is mainly that of knowledge

about the various reliability prediction indices and equations of the sort noted

in Figs. 2-1 and 2-2. Other factors such as schedule and the extent of the intended

reliability program are more subjective in their implications. Here the influence

is more on the choice of parameter values rather than the choice of equations.

There is little which can be said on applying this technique to this situation

and that technique to that situation which is not apparent to someone who understands

what you are talking about. About all that seems appropriate is a plea to use common

sense, e.g., use the simplest approach commensurate with the purpose of the analysis

and the accuracy of the parameter data.

Life Cycle. Reliability prediction plays its major role during the planning

and early design phases of a program's life cycle. In these earlier phases of the

program a priori techniques of the sort described in this report are used. It can

be expected that there will be many iterations of a prediction as the program pro-

gresses, and that the prediction model will become more complex. When the program

progresses to the point that test and operational data start to become available,

then the a priori prediction techniques start to give way to the a posteriori tech-

niques of statistical inference. The reliability prediction model still has a role.

It provides a means for combining statistical inference estimates on items into a

composite measure for multi-item levels.

Con_nodity Considerations. Reliability prediction at the nonrepairable part

level is largely a matter of selection of the appropriate form from Part II by which

to express the reliability measure. This includes the designation of the stresses

which are appropriate. At the equipment level, say in the order of hundreds of piece

parts, the main consideration as to what technique is used depends largely on whether

the equipment is electrical or non-electrical. Electronic equipment typically uses

a very straightforward approach. The parts are assumed to have a constant failure

rate and failure rates are added to obtain the failure rate (or its reciprocal mean-

time-between failure) for the equipment (See Sec. 8.1.1). This approach is also

sometimes used for nonelectrical commodities, but often more involved prediction

techniques will be applied to mechanical or structural commodities. The stress-

strength approaches of Secs. 5.3 and 9.2 are structurally oriented, but they are

8



really specialized applications of broadly applicable approaches concerning environ-

ment effects which are noted in Secs. 4.4 and 9.1. At the system level the techniques

which are used tend to be quite varied and the entire scope of Part III is applicable.

Mission Implications. The operational time periods and the environments of

the operational profile, of course, affects the choice of the reliability prediction

technique. Space systems have been thus far of a one-shot nature with the main periods

of launch, orbit, and recovery. Launch and recovery environments tend to be somewhat

severe, whereas orbital environments tend to be moderate. A major constraint handicapping

reliability measurement prior to use has been the combined effects of the lack of

experience, the cost, and the small quantity of some commodity types. The decade

of space experience has alleviated these conditions to some extent. However, presently

the nature of space missions is being extended to deep space missions and eventually

to commodities reusable after recovery. Thus an increasing number of one-shot, non-

reusable commodities are on the verge of giving way to multiple use, repairable com-

modities. Space reliability predictions will thus start to take on more of a similarity

to predictions for systems intended for airborne and surface missions. These latter

types are as much concerned with the implications of repair, that is maintainability,

as they are with reliability. The typical airborne system which is not operating

continuously is desired to have a very high overall availability followed by a very

high reliability for relatively short missions. The overall availability here is

of a continuous nature and the missions are of a cyclic nature. Systems for surface

missions often are continuously operational, but they can quite often be removed

from operation for repair or maintenance. However, they usually will have short

periods of intense operation where no repair is possible. These short periods may

be somewhat predictable, as for space-oriented services, or they may be nonpredictable

as for military uses. Presentations on maintainability and availability prediction

techniques are available in Refs. 2 and 3.

Subjective Factors. The ultimate accuracy is primarily affected by the subjective

Judgment of the person performing the reliability prediction. Main considerations

are the kind of reliability program with attendant influences of budget, schedule,

and the operational environment. Historical experience in reliability prediction,

particularly where it has been followed up with reliability measurements, have helped

considerably in this area. Detailed listings have been made of the many variables

which are pertinent [Ref. 4] but in the final analysis this is largely a matter of

mental assimilation on the part of the person performing the prediction.

2.3 Related Analyses

Other types of analyses overlap and interface with reliability predictions.



Brief commentsare given belowon these allied studies. The comments are aimed pri-

marily toward the equipment and system level of commodity complexity, and particularly

toward the latter. System effectiveness is currently a popular phrase which is used

to cover the scope of the considerations cited below. Some system effectiveness

models have been proposed which attempt to pull together the appropriate ingredients

[Refs. 5 and 6]. This is possible to some extent with the gross models and their

attendant assumptions. A system effectiveness analysis will typically reflect the

effort of various individuals as it is unlikely that any one individual can master

or have the time to perform all of the analysis areas intended in any one program.

Other Reliability Analyses. During the planning and early design program phases

the other reliability analyses, in addition to prediction, can be classified into

failure mode and effects, performance variation, and stress as suggested in Ref. 7.

Failure mode and effects analyses are often probing to a level of detail which is

not reflected in the reliability prediction model. It is often of a seml-qualitative

nature. It is conceptually possible to reflect extremely detailed failure modes

into reliability prediction.* However, there are usually the practical reasons of

the unavailability of data and the complexity of such models which prevent a literal

one-to-one correspondence between the failure mode and effects analysis and a reliability

prediction.

The performance variation analysis is concerned with the area of reliability

prediction which in this report is referred to as bound-crossing. The reliability

discipline has promoted approaches for drift failure analysis of electronic circuits

which are commonly referred to as worst-case or as tolerance analysis techniques.

These have proved to be of value for purposes of reliability improvement. However,

they almost invariably are not extrapolated over into the reliability prediction

analysis. Again this is conceptually possible but usually not done for sound reasons.*

It should be noted that with mechanical and structural commodities there has been

greater use made of bound-crossing techniques for reliability prediction purposes.

A prominent example here would be the classical stress-strength model. Those which

are conventional or classical are noted in Parts II and III of this report.

Stress analysis typically has the most explicit relationship with a reliability

prediction.* This is because many of the reliability prediction manuals include the

applicable stress deratlng and failure rate adjustment tables and curves. Examples

are the effect of temperature, current or wattage levels on the failure rate. In

the nonelectronlc commodity the stress-strength model would be an example of a technique

which is common to stress and prediction analysis.

* Part IV of this report presents some thoughts on structuring a detailed reliability
prediction model which explicitly incorporates this detail.

I0



Conventional Desisn Analyses. These traditionally involve both performance and

stress calculations and are what the design engineer would do to some extent regard-

less of whether he is explicitly concerned with reliability analysis. The performance

analysis is mainly related to the bound-crossing type of reliability measure and to the

performance variation analysis. The traditional deterministic, engineering equations,

relating performance attributes to part characteristics and other variables, become

part of the performance variation analysis. Similarly, the traditional deterministic

stress equations are developed and used by the designers. Calculation of safety margins

to such factors as voltage, power and temperature is a familiar form of this type of

stress investigation.

Saf_y. Systems analyses for manned space missions have always been directed

toward both safety and reliability. In terms of the impact on the reliability predic-

tion model, it usually turns out that the same, or slightly modified, prediction approach

will serve the safety prediction needs as well as those of reliability. For safety

there will typically be a different criterion of failure and a different operational

profile than for reliability. Also note that in nonspace types of systems, safety

analyses are also being performed [Ref. 8].

Availability and Maintainability. When repair is possible during application,

then availability and maintainability cannot be avoided in the prediction. This adds

a measure of complexity to the prediction technique, as the reliability prediction

literally becomes absorbed by the availability prediction. Some comments have pre-

viously been made on these analyses in Sec. 2.2 under the heading of Mission Implications.

Spares. Reliability prediction techniques have been experiencing increased

applications in spares planning and optimization. These may seem to be inseparable;

nevertheless, reliability analysis and spares analysis have been traditionally performed

by separate groups. Furthermore there are reasons which from the spares viewpoint

cause items to have higher failure rates than from the operational viewpoint. Examples

here would be the effects of secondary failures and the replacement of incorrectly

diagnosed failures. It is also noted that optimum spares allocation and optimum

redundancy allocations can use identical approaches.

Cost Trade-off. If cost-rellability relationships are available for single items,

then for some forms of multi-item configurations the literal optimization techniques

can be applied in order to obtain optimum reliability values for items. Also, to some

limited extent this can be expanded to include simultaneous optimization of reliability

and spares or reliability and maintainability. The main limitations here are the

accuracy of the cost-reliabillty or cost-maintainability relationships and those of

optimization techniques. Note also that the optimum allocation techniques find

application for other penalties than cost, e.g., volume, weight, power, or perhaps

simultaneous treatment for several of these.
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The basic reliability allocation problem which is amenable to analytical solutiom

is that of selecting an optimum system configuration from allowable alternate design

approaches so that reliability is maximized subject to a penalty constraint, or vice-

versa. It is necessary to have a reliability prediction equation which covers the

range of allowable alternate design approaches and similarly a penalty prediction

equation. Thus one use of the suitable reliability prediction equations of this

report is to provide an input for a reliability allocation. An approach to this

problem can be developed based on the dynamic programming principle. As would be

expected exact solutions can be obtained from problems Which are usually too simple

to be of practical value. For example, Ref. 9 gives a dynamic programming procedure

for selecting exactly the order of the active redundancy in the case of one constraint

and of the active form of redundancy. Procedures for more realistic problems can be

developed but they usually yield an approximate solution. However, the incompleteness

usually will not result in differences of practical importance.

Refs. i0 and ii describe computerized approaches which are suitable for realistic

problems. The approach in Ref. i0 is for identifying an optimum redundancy configura-

tion where each item in the system can be active, standby with switch, or spare

redundancy. It is assumed that only one item must work, that the items have an

exponential failure distribution, and that the failure (or success) events for the items

are mutually independent. Ref. ii treats essentially the same problem ignoring the

switch but introducing the non-serial, e.g., a "bridge," configuration. The former

paper is patterned after the results in Ref. i0 but allows for more practical

redundancy alternatives.

It was decided that the result given in Ref. i0 could be generalized to include

the case in which at least n o items must work out of n items (n o < n). In order to

do this it was necessary to derive a general reliability prediction formula for

parallel arrangements, as shown in Sec. 8.4. This formula has been computerized and

the program is discussed in Volume II - Computation. This program is actually a sub-

routine in the general Reliability Cost Trade-off Program (RECTA). The subroutine

enables one to consider majority voting redundancy as well as the three types of

redundant items as noted above. Practical procedures for obtaining an optimum selec-

tion of the reliability of items in series can also be based on a dynamic programming

procedure. This is where reliability improvement of an item is improved by such means

as design and manufacturing emphasis on reliability and redundancy is not allowed.

The largest difficulty here is obtaining an accurate relationship between item relia-

bility and cost. The general reliability cost trade-off program (RECTA) cited above

simultaneously treats configurations containing series and the various redundancy

approaches. Here the allowable alternative for an item includes increasing the
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reliability of the non-redundant item and/or making the item redundant. Any of these

alternatives can be disallowed, thus a generalized serles-parallel reliability alloca-

tion procedure.

RECTA as cited above was developed as part of an evaluation of computer

programs for system effectiveness [Ref. 12]. This reference and other sources will

call attention to the possible use of allocation procedures based on linear and

quadratic programming and on Lagrange multipliers. These approaches have usually not

proven suitable for realistic reliability-cost allocation problems.
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3. Needs and Problems

The largest need is that reliability prediction be included or be considered

as an essential element of the actual decision-making process. This is not Just

a matter of design engineers and managers tolerating the reliability prediction,

but rather one where the desired situation is that these persons need and want the

results of the prediction. The reliability prediction should be influencing the

design and operating plans, rather than a separate exercise whose outputs are ignored

or forced to Justify a preconceived design and operating plan. The problems here

are grouped into those concerning people, data, and techniques. These remarks are

not in the sense of criticizing anyone or any discipline; rather, they are intended

as unemotional commentary.

3.1 People

Reliability prediction utilizes heavily the mathematics of probability. Reli-

ability measurement and testing utilize the mathematics of statistical inference.

These are both complex subjects that are simply difficult to really learn. In addi-

tion to the practical knowledge required for applying them, the theory is also important.

The majority of technical persons, including designers, management, as well as reliability

engineers, typically have not had the opportunity to become well-versed in the mathematics

of probability and statistical inference prior to their initial attempts at using

them.

The solution here is not at all readily apparent. A probability or statistics

course or two in the college curriculum or a concentrated short course after college

really only helps the person co_unicate better with someone who is well-versed in

these subjects. Persons specifically trained in the mathematics of probability or

statistics, on the other hand, have their difficulties in understanding the engineering

applications. Such a person in a product-oriented organization will typically have

difficulty adjusting to the approximate nature of engineering mathematical models, to

the myriad of pertinent variables which cannot be reflected simultaneously in equations,

and to the situation that testing to satisfy statistical confidence often requires

unrealistically large sample sizes due to cost considerations.

There is some sentiment for having the design engineer also pick up the task

of reliability prediction and the other reliability analyses. There is much to be

said for this; after all, these persons, particularly at the equipment level, are

usually called upon to provide cost, weight, and other predictions in addition to

strict performance. It is generally accepted that the designer is "responsible"

for "designing reliability" into the equipment; it follows that he should have some

degree of responsibility for the reliability analysis of his design. For electronic

equipment this may be a reasonable approach. Some few suppliers are doing this.
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They do not have reliability specialists, or if they do he performs the role of a

consultant. For structural and mechanical commodities and for systems, the reliability

prediction is more complex than for electronic equipment. The approach of having

the designer also perform the reliability prediction is more difficult here. Even

if management decides that the approach of having the designer perform the prediction

is desirable, it is still difficult to implement. These design people are already

generally overloaded in work schedules. Also, they may not be interested.

A nagging consideration to many persons is that the mathematics of probability

and statistics have enjoyed successful application in many areas, for example, communi-

cations, economics, biology, agriculture, and information theory. It seems that it

is the reliabillity area which perhaps uniquely has a somewhat unsuccessful history of

application of probability and statistics. At least the road here has been a lot

rougher than in other areas. One cannot help but feel that a major reason is that

many of the people who have been involved in reliability prediction - the people doing

them as well as other persons who are expected to use the results - have Just been

weak in the theory and practical applications of probability and statistics.

3.2 Data

Data refers to the actual numerical value of reliability indices for various

items. Thus data, one way or another, revert back to some type of reliability

measurement. Even once the need is recognized, there is the problem of how to go

about making reliability measurements. What is the best index? The greater the

reliability of any item, the more difficult it is to measure. Who is to pay for it?

A part or equipment supplier often will deliver his product and will never hear any-

thing further regarding reliability, particularly if it is satisfactory. Experience

with the reliability measurements of operational items have indicated that it is near

impossible to rely on operational and maintenance personnel to supply this data;

special persons have to go along Just to record the reliability information. In

addition, there is recognition of the situation that it is more glamorous to work

with models and equations than to try to record and interpret data.

Efforts, of course, have been made at gathering and disseminating data, and these

continue (Sec. 6 of this report contains some data references). These are to be

commended. Contractors are more and more developing their own data and making data

banks, but they are handicapped. More efforts are needed in the data area and of

necessity will require funding by various government agencies. Individual contractors

do not have wide access to operational sites, nor do they have much funding for this.

With regard to individual programs, there is a great opportunity for using sampling

techniques rather than to record everything, particularly with actual operating equip-

ment and systems, in order to gather needed information.
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3.3 Techniques

A few co_ents are given here on the area of reliability prediction technique

needs; however, this is not as large a problem area as those of people and data. Con-

flicting positions can be easily taken. On one hand, it can be said that more complex

techniques are not generally going to be applied because invariably better data is

needed. It is unlikely that such data will become generally available. On the other

hand, it can be argued that complex situations require complex mathematical models.

In any case, efforts will continue for technique development. It is something that

can be done individually and without major funding. It is the sort of thing that

people who are inclined in this direction will continue to do whether they have a great

deal of support or not.

Computers seems to continue to get faster with larger storage. This opens the

door to more involved and more complex analyses. Rationale-wise, there is a need to

cycle more practical experience back into the development of prediction techniques.

This is now becoming possible more than previously because of the increased experience

with reliability prediction.

At the system reliability level, opportunity areas are more explicitly bringing

in the human impact and the environment, that is, treating the reliability of man as

well as the machine and treating other unknowns such as possibly the environment as

a probabilistic variable. At the equipment level a need is how to formulate proba-

bilistic models for treating distinct failure modes simultaneously with environment

(Part IV of this report presents some thoughts on this). At the systems level again,

there is a need for improved methods to tie together maintainability, spares, per-

formance, and cost with reliability. This has been labeled systems effectiveness, and

there are efforts under way here as noted in Sec. 2.2.

Also to be given due consideration is the opportunity for less complex methods,

that is, striving for balance between complexity of the prediction technique and

accuracy of the result. There are places for simple rules of thumb and for simple

estimating relationships.
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Part II. Single Item Reliability

In this part the concept of reliability measures for a single item are discussed

from a broad viewpoint. The reliability measures consider two basic categories of

problems: (i) those in which an item is in either a success or in a failed state

(considered in Sec. 4) and (2) those in which certain characteristics of an item

may be of an unacceptable value, the "bound-crossing" problem (considered in Sec. 5).

Guidance on obtaining numerical index values for a single item of both categories is

given in Sec. 6.

These reliability measures are potentially applicable to any item or event to

be considered in a prediction. Thus inputs for multi-item prediction equations would

be of one of the forms covered, as would the output of the prediction. Or, if the

reliability measures for an item is obtained from testing, then inferences would be

made concerning these measures.

These definitions will, in the main, be well-known to reliability workers.

Some features are covered, however, which are not emphasized in existing handbooks

and books. These are the following: Possible confusion concerning mathematical

descriptions of the widely cited bathtub curve when it is used for non-repairable

items such as parts versus for repairable items such as equipment is discussed in

Secs. 4.3 and 4.8. Uncertainty in the environment is discussed in Sec. 4.4.

Explicitly bringing time into consideration for bound-crossing problems is introduced

in Sec. 5.4, where possible failure criteria for non-monotonic drift requires

careful treatment.
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4. Reliability Measures

Various indices used for reliability measures are described in this section,

and there is a probing beyond conventional assumptions. The material gets progres-

sively more involved, starting with simpler notions and models. The later part of

this section goes into considerations of reliability measures for repaired items.

4.1 Definitions of States and Reliability

The simplest way of classifying the state of an item is as two states,

success (S) and failure (F). Let P(S) be the probability of success and P(F) be the

probability of failure of the item subject to given conditions under which the

probability measures are to be defined.

R = P(S)

1 - R = P(F)

P(S) + P(F)

Then

= probability of success,

= probability of failure, and clearly

= 1.

This simple classification and the associated indices of reliability and unreliability

are based on several assumptions such as the following:

(i) a definition of failure exists,

(2) the probabilities of success (or failure) are conditional on a known

(deterministic environment, or on known characteristics of environment

described by probabilistic measures, and

(3) the classification is for a certain future time instant or time interval.

Much of the subsequent material in this section involves expanded treatment of these

assumptions. The assumptions should be kept in mind, but more important, they should

also be kept in perspective. Most definitions and mathematical models are based on

assumptions which are not fully met when associated with real world situations. The

delicate question is always one of the effects of violation or relaxation of the

assumptions for the problem which is at hand. Sometimes extremely simple equations

will do the Job; at other times extremely complex equations are needed. In some

situations the state of an item should be subdivided into three states S, FI, and F 2

for an adequate approximation to real world application. F 1 and F 2 are two different

failure modes and the probability identity can be written as

P(S) + P(F I) + P(F 2) = 1.

Some examples for consideration of two failure modes are digital circuits, relays,

switches, and diodes. In general, any reasonable number of states may be associated

with the various modes which an . item might assume. Some additional comments concerning

mathematical descriptions of multiple failure modes appear in Sec. 4.3.
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It is desired to broaden one's concept of failure to include the many possible

types which may occur. Some examples of failure modes are given below.

(i) The performance of an item deviates from its nominal value by more

than i0 percent.

(2) A diode opens or shorts.

(3) An amplifier is "noisy".

(4) An accumulation of the effects of a somewhat periodic variation of the

performance of an item outside given bounds. _

(5) Corrosion of a boiler tube.

(6) Fracture of a pressure vessel.

These various types of failure are introduced to motivate one to pay attention to

possible ways in which items can fail and hence not overlook any important details.

4.2 Reliability as Function of Time

The probability density function of time to failure of an item will be used as

the starting point, as this can be visualized easily from a histogram of time to

failure data. In Fig. 4-i a histogram is shown as dashed and the associated

probability density is the continuous function.

(i) The probability density of failure as a function of time t is

p(t), t > O. (4-1)

(2) The probability of failure of the item by time t is the cumulative

probability t

F(t) = fp(t)dt. (4-2)
0

(3) Reliability is the probability of no failure by time t

R(t) = 1 - F(t) = 7p(t)dt. (4-3)

t

(4) The hazard rate is the conditional probability of failure given

that the item has not failed by time t. Other terms widely

used for hazard rate are failure rate (when exponential failure

density function applies), instantaneous failure rate, or force

of mortality.

The probability relationship concerning two dependent events can be used to develop

the hazard rate. Recall that*

p(AIB) P(_)
= P(B)

Basic probability definitions and relationships are presented in Appendix A.4.
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If: P(AIB)

Hence

P(AB)

P(B)

= h(t)dt = probability that an item fails between t and t+dt, given

that it has not failed by t,

= p(t)dt = probability that an item has not failed by t and that it

fails between t and t+dt, and

= R(t) = probability that an item has not failed by t.

P(A[B) = P(_) = p(t)dt
P(B) R(t) '

h(t)dt = p(t)dt or h(t) = p(t) (4-4)
R(t) ' R(t) "

The hazard rate function h(t) can also be obtained using the fact that it is an

instantaneous failure rate.

h(t) = llm F(t+At) - F(t) i _ p(t)
At_O At R(t) R(t)

It can also be expressed as follows:

-R'(t) _- _ din R(t)
h(t) -

R(t) dt '

where R'(t) is dR/dt. Reliability can now be expressed as

R(t)

t

= exp{-fh (t)dt}.
0

(5) The mean time to failure, MTTF, is the expected time to failure.

The expected value of a random continuous variable x is

E(x) = 7x p(x)dx

or in the above notation

° 7E(t) -- MTTF -- it p(t)dt -- R(t)dt (4-5)
0 0

The last result can be seen by integrating by parts the following

_t R'(t)dt, R'(t) -
dR

dt "
0

The definitions in Eqs. 4-1 through 4-5 were developed for time as a

continuous variable. In some situations it is appropriate to measure time as a

discrete variable, where the number of cycles or operations to failure is a discrete
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variable. The definitions in Eqs. 4-1 through 4-5 have direct counterparts for handling

discrete variables. These counterparts for the discrete variable case are shown below,

where n is the number of cycles to failure [Ref. 13].

Probability density:

Probability of failure:

Reliability:

Hazard rate:

Mean cycles to failure:

p(n), n = i, 2, 3, ... (4-6)

n

F(n) = _ p(n) (4-7)

R(n+l) = i - F(n) (4-8)

p(n) (4-9)
h(n) = R(n-l)

MCTF = _ n p(n). (4-10)
i

A large number of possible probability density functions (discrete and

continuous forms) have been proposed. Several are shown in Appendices A.I and A.2.

Although these density functions are presented with reference to lifetimes, there are

also other possible applications of these same density functions in reliability

analysis. Some of these density functions will again appear in subsequent sections

of this volume. See Ref. 14 for some good examples of application of various

density functions for reliability purposes.

The exponential density function is widely used in reliability prediction and

its key feature, a constant hazard rate, is illustrated below in Ex. 4-1. One of

the most common misconceptions appearing in the reliability literature is the

implication that a random failure law and the exponential failure law are one and

the same. Assuming a random failure law simply implies that failure times occur

randomly over time according to the stated probability distribution, there can be

any number of distributions or laws depending upon whether the log-normal, the

Weibull, the gamma or some other distribution is assumed to best describe the

distribution of failure times.

Example 4-1

A high-power magnetron has an exponential distribution of time to
failure with a failure rate of 2.5 x 10 -3 failures per hour. The probabil-

ity density function of Fig. 4-1 is of this item. (a) What is the relia-

bility for a new magnetron for the first 40 hours of operation? (b) What

is the reliability for the following 40 hours of operation if the

magnetron has not failed during the first 40 hours?
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Solution:

(a) The probability density function (pdf) of the exponential distribution is

-Xt
p(t) = Xe

Using Eq. 4-3, the reliability equation for the exponential distribution is

-_tdt -XtR(t) = = e
t

For X = 2.5 x 10 -3 , t = 40 hours the reliability is

-2.5xlO-3x40
R = e = 0.905.

(b) Rephrasing the second question, what is the probability that failure will not

occur in an interval At = t" - t', given that it has not failed up to time t'?

Using the probability that an item failed between t and t+dt if it has not failed

by t shown in development of the Eq. 4-3:

p(t)

-[_ -- Probability density function

I ,_

_; ..... Histogram

, i : ; , _m_m._..
' ' ; I I ,'.,' '.,' i
, ! i i ! | I ;
• m I I I I I

0 400 800 1200

time, hours

Figure 4-i Exponential Probability Density

With _ = 2.5 × 10 -3 and a 400 Hour MTTF
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t I!

fp (t)dt
t'

R = 1
R(t')

= 1 - R(t') - R(t") = R(t")
R(t') R(t')

In the example problem for the exponential distribution

R -

-At" -%(t'+_t)
e e

-At' -%t'
e e

-_At
e

-2.5%10-3x40
= e _ 0.905.

Thus the same solution applies to questions (a) and (b). Let us now apply Eq. 4-4

for the hazard rate to the exponential distribution to assist in understanding this

result.

p(t) %e -%t

h(t) = R(t) = -_t = _"
e

The hazard rate for the exponential distribution is constant. For the exponential

distribution the same reliability equation applies regardless of how much operating

time has been accumulated. Only the exponential distribution is like this, which

is one reason why it is widely used in reliability analysis.

4.3 Bathtub Curve

A form of the hazard rate which is widely cited in reliability literature is

the bathtub curve as shown in Fig. 4-2(a). A popular reasoning on how such a curve

would come about is as follows. The early decreasing hazard rate is thought of as

resulting from manufacturing defects, and early operation will remove these items

from a population of like items. The remaining items have a constant hazard rate

for some extended period of time where the failure cause is not readily apparent and

finally those items remaining reach a wear-out stage. There is a strong parallel

between the above curve and the instant mortality curve for human beings.

None of the commonly used reliability distributions such as those cited in

Sec. 4.2 and expanded on in Appendix A.I, e.g. log-normal or Weibull, individually

has a form which has this bathtub shaped hazard function. Thus if a mathematical

description of the bathtub curve is desired then it must be developed. One approach

would be to first select an appropriate probability density for each of the three
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periods of decreasing, constant, and increasing hazard rates as shown in Fig. 4-2(b).

These will respectively be Pd(t), and Pc(t), and Pi(t). These could each be for the

Weibull or gamma distribution with different shape and location parameters for each

of the three periods. The Pc(t) for the constant hazard-rate will be the exponential

distribution, which is one case of both the Weibull and gamma. Further, there is a

probability that only one of the failure causes will occur for an item, where

P(d), P(c), and P(i) are respectively these probabilities for each of the three causes

and P(d) + P(c) + P(i) = i. These probabilities for a single item will be the same

as the percentages for a large population of these failed items which would fail

from each of the causes. A probability density for an item such as that shown in

Fig. 4-2(b) could be developed from

p (t) = P(d) Pd(t_ + P(c) Pc(t) + P(i) Pi(t). (4-11)

where the terms are discussed above. The reliability function and hazard rate can

then be developed using Eq. 4-3 and 4-4.

Another approach to the development of a reliability function for the bathtub

shaped hazard curve is to treat the reliability of each of the causes as conditional

even_s_. Here the probability that an item will not fail as a function of time is

R(t) = R(_;t) R(_;tld) R(T;tld,c ). (4-12)

where d is the event of no failure from the cause described with a decreasing hazard

rate and similarly for c and i. Development of this function will lead to the same

results as development of Eq. 4-11.

There are two reasons for this discussion. One is that the development of

Eqs. 4-11 and 4-12 illustrates how the same item would be mathematically described

where time and multiple failure modes (or failure states of Sec. 4.1) are both

explicitly considered. This approach will be used later in Part IV where detailed

failure-modes are again treated. Another reason for development of mathematical

models which would have a bathtub shaped hazard function is to assist in the under-

standing of the implications of these curves.

The above discussion is for a bathtub shaped curve for an item or for a popula-

tion of identical items where a failed item is not repaired or replaced. The bath-

tub shaped curve is also used in association with the situation where an item is

repa_ed or replaced, in particular for repairable equipment. When failed items are

repaired er replaced, then the mathematical development of the bathtub curve is

different than noted above. This use is discussed in Sec. 4.8 following the presenta-

tion of some groundwork in Secs. 4.5 through 4.7 concerning reliability measures of

repaired and replaced items.
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Figure 4-2 The Bathtub Shaped Hazard-Rate Curve

and Its Probability Density
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4.4 Consideration of the Environment

The reliability of an item is defined as the probability that an item performs

its intended function under defined conditions at a designated time for a specified

operating period. Thus the reilabillty is conditional on a specific environment or

environmental profile whether it is estimated by a simulated test or from results of

items used in previous missions. The environment might be characterized by fixed

conditions, such as temperature equal to 30°C, or it may be described by a deterministic

profile, such as that shown in Fig. 4-3.

T

E-4

Time

Figure 4-3 Example of Deterministic Environmental Profile

The environment might also be characterized by a random variable or a random

process where time is explicitly considered. Some approaches to considering the

effect of random environments on reliability measures are discussed below.

If the environmental stress is described by its density function p(E), then

the probability of successful operation is given by the following procedure. Let

the conditional probability of success given E be denoted by

P(SlE),

then the unconditional probability of success for continuous density function, p(E),

is given by

P(S) = fP(SIE) p (E) dE (4-14)
E
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and for discrete density function, P(Ei) , i = i, 2, ..., by

P(S) = I [P(SIEi) P(Ei) ].
i

(4-15)

Example 4-2

Consider the simple example in which the probability density

for the environment is discrete as given below.

1

for E1

1
P(E i) = _ for E2,

i
for E 3

and let the probability of success conditional on these environments be

p(SiEl ) = 48

P(SIE2) = 8

p(SIE3 ) = !8 "

Then the unconditional probability of failure is

[I'P(S'Ei) P(Ei)] 1 4 i 3 i I iiE

i

The above concept also cmn be used when an event requires an elapsed time period

(such as S = no failure to time t) and also when the environments are time

dependent.

In some situations it is necessary to explicitly consider the environment

a random process with known characteristics. Consider the problem where an item

will sometimes fail when an environment which is a random process reaches a certain

level. If the environment is a random process with peaks the distance between which

is given by the negative exponential distribution (assuming they occur with rate A

per unit time period) and if the conditional probability of failure is p given that

a peak has occurred, the probability that the item does not fail in the interval

(0, t) is given by
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P(S) = P(no peaks in (0, t)) + P(1 peak in (0, t))q

+ P(2 peaks in (0, t)) q2 + ...

-%t -_t

-At (_t) e (At) e q2 +
= e + i! q + 2! "'"

-Apt
= e

Thus the failure time distribution is exponential under this environment. See

Refs. 15 and 16 for further discussion on this and related descriptions of a random

environment. Further, if an item will fail only after k peaks or shocks have occurred,

the gamma density function is appropriate. That is

%k tk-I e-%t

Pk (t) = r(k) ' t _> 0

where

Pk(t) = 0, elsewhere, (4-16)

t is time,

is the rate at which the shocks occur,

k is the number of shocks for failure, and

r(k) = (k-l) ! = (k-l) (k-2) "'" i.

In summary, the nature of the environment must be considered carefully to

hypothesize models for behavior of the reliability function.

4.5 Poisson Processes

The Poisson process is widely assumed in reliability prediction, particularly

for repairable items such as the typical electronic equipment.

Let Pn(t) = probability that exactly n occurrences are recorded during a

time interval of length t.

Thus Po(t) -- probability of no occurrences, and

1 - P0(t) -- the probability of one or more occurrences.

It is assumed that

l-Po (t)
lim -_ A, that is the probability of one

t
t+O

or more occurrences is proportional to the length of the interval, _ is a positive

constant, the failure rate of an item. See Ref. 17 for a detailed development of

this process and related birth and death processes.
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Postulates: Whatever the number of occurrences in the interval (0, t), the following

conditional probabilities hold

P(an occurrence in the interval (t, t+h))

P(more than one occurrence in (t, t+h)) =

-- Ah+o (h) ,

o(h).

The above postulates yield the following difference equations.

P (t+h) = P (t)(l-Ah) + Pn_l(t)Ah + 0(h), n > 1 (4-17)n n

i.e., the probability that there are n occurrences in the interval (0,t+h) is the

probability of n occurrences in the interval (O,t) multiplied by the probability

of no occurrences in the interval (t,t+h), plus the probability of n-i occurrences

in the interval (0,t) and one occurrence in the interval (t,t+h), plus the probability

of n-x (x _ 2) occurrences in (O,t) and x(_ 2) in the interval (t,t+h), (the latter

is of order o(h)). For n = 0

P0 (t+h) = P0(t) (l-Ah)
or

P0(t+h) - P0(t)

= -APo(t )h

and as h + 0 one obtains

dP 0 (t)

dt = -AP0(t) or P_(t) = -AP0(t).

Using P0(0) = 1 we get P0(t)

the differential equation

-At
= e Equation 4-17 similarly can be reduced to

P'(t) = -AP (t) + AP n l(t) n > i. (4-18)n n - ' --

Substituting into Eq. 4-18, we obtain

Pl(t) = Ate -At '

We derive successively all the terms to obtain the general terms

-At n

P (t) = e (At)
n nl , n = 0, i, 2 ..... _. (4-19)

lira :
* o(h) is a function of h such that h__O__--_-- j O.
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This formula gives the probability that n occurrences will be observed in a time

interval (0,t) with a constant rate of occurrence per unit time equal to A. The

quantity At is the expected number of occurrences in the time interval of length t

and one frequently sees the form

-_ n

P (t) e 9___
n - n! ' (4-20)

where _ is the expected number of occurrences in the time interval of length t.

Example 4-3

Suppose that an item has a failure rate, A, of 0.001/hour. What

is the probability that no failures occur in i00 hours?

Solution:

Thus

At = i00 (.001) : 0.i.

-At -0.i
P(0 failures) = e = e

Note that this is equivalent to the reliability of the item. Hence one can better

understand the tle-ln between the Poisson distribution and the exponential distribution.

Example 4-4

Suppose that a certain item is tested as follows. One item is

placed on test until failure and it is then replaced by another identical

item, etc. Suppose further that the failure rate of the item is 0.001/

hour and that the test is for i0,000 hours. What is the probability of

at least 15 failures?

Solution:

At is equal to 0.001 (10 %) = 10, the expected number of failures in 10 _ hours.

Thus the probability of at least 15 failures is given by

e-At (lt)n -i0
: _ = _ e i0 n

P(n > 15) n 15 n! n 15 n!
- 0.083

using Molina's Tables [Ref. 18 ] for the Poisson distribution. The same solution

would apply to the above problem if a single item was repaired and returned to

operation. Here the operating times between failure would be exponentially dis-

tributed, and the equipment reliability index, Mean Time Between Failure (MTBF), is

the mean of this distribution. Only the operating time would be considered. Further,

the same solution would apply to any number of identical items operated for a total

time of I0,000 hours, regardless of how much time was accumulated on any item.
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A reason why the Poisson process is widely assumed in reliability prediction

is that in this mathematical model past operation has no influence on future relia-

bility. This simplifies a prediction analysis; for some complex systems it makes

the prediction practical.

4.6 Reliability Measures for Repaired Items

Reliability descriptions for repairable items are discussed here for a

general situation where an example of such an item would be a motor or typical

electronic equipment. With repair, there are time (of operation) to first failure,

time between first and second failure, time between second and third failure, and

so on. Each of these failure times when considered for a large number of identical

items will have a distribution associated with it; these distributions may or may not

be identical.

The data from motor failures [Ref. 19] have indicated time between failure

patterns as in Fig. 4-4. Density functions of the time to first failure, time

between first and second failure, time between second and third failure, and so on

are shown in Fig. 4-4, and these could be fitted with Weibull distributions with

different shape and scale parameters. The origin of each density function is when

operation is resumed after the motor is repaired. When the density functions are

plotted on an elapsed operating time scale, starting with the earliest initial

operation, then only the time to first failure density function is as shown in

Fig. 4-4 and the others have a different shape. This is illustrated in Fig. 4-5.

The density function of the time to second failure on the scale in Fig. 4-5 is the

sum of the time to first and time between first and second failure; the time to

third failure is the sum of the first, second and third, and so on. There is

considerable overlap on the time scale of Fig. 4-5; as an example the early overlap

of the first and second times comes about because some of the first failures occur

late, which are repaired, and the second failure occurs shortly. The overlap

reflects the many possible combinations by which the first and second failures can

occur. As the third, fourth, and additional failures are brought into consideration,

they enter into the overlap on the elapsed operating time scale in a similar manner.

The summing operation is referred to as convolution. Fig. 4-5 also illustrates the

renewal rate, which represents the total number of items failing per unit of time,

divided by the original population. It can be seen to be the sums of the ordinates

of all the density functions of the time to failure as a continuous function of time.

Note that this is a conventional deterministic, algebraic summing, and is thus dif-

ferent from the probabilistic convolution type summing noted above. The renewal

rate where an item is repaired is similar in one sense to the density function of the

non-repairable item, as their shapes are what the smoothed curves for histograms

31



P(t i)

ti_ I ti

Figure 4-4 Time Between Failures With Different Density Functions

r(t) l l_-i 2 __ J 5
and

ui(t)

0 t

Figure 4-5 Renewal Rate Associated With Fig. 4-4
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of populations of items would look like. However, they are different in the sense

of predicting the reliability for a single item. If for a repairable item the

accumulated operating time since the last failure, and the shape of the density

function of the pending failure is known, then a reliability prediction equation

would be based on Eq. 4-4. If this information is not known then how a reliability

prediction would be made would depend on just how much is known concerning accumulated

operating time, accumulated failures, and the time of last failure.

The mathematical description of the renewal rate is sketched below. Extensive

treatment of it can be found in Ref. 20.

ul(t ) = Pl(t)

t

Ue(t) = ful(t I) P2(t-tl)dt I
0

t

u.(t) = lu. _(t..) Pi(t-ti_l)dti_ 1
i 0 z-± z-±

t

u (t) = fUn_l(tn_ l) Pn(t-tn_l)dtn_ l •
n 0

The renewal rate is their sum:

(4-21)

Here

r(t)

Pi (t)

u.(t)
1

r(t)

n

: iZ1 ui(ti)"

= the density function of the time between the

(i-l)th and it h failure where elapsed time

only includes that of the it h failure.

= the density function of the time to the it h

failure, where elapsed time includes that

of previous failures.

= the renewal rate where elapsed time is

continuous.

(4-22)

The renewal rate has not received much explicit application to conventional relia-

bility predictions, as conventional predictions typically assume that time between

all failures during the period of interest have an exponential distribution and
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thus are a Polsson process as discussed in Sec. 4.5. The Poisson process was

developed in Sec. 4.5 using difference equations, but it could also be developed

using the renewal rate as the basis. However, for various mixtures of non-exponential

distributions where the difference equation approach is not applicable, the renewal

rate offers an approach for developing appropriate mathematical models. The discus-

sion of renewal rates is included here to give those interested in using non-expgnential

distributions for repairable items an indication of how to get started and also to

support the later discussion in Sec. 4.8 concerned with the use of bathtub shaped

curves for repairable items.

4.7 Reliability Measures for Replaced Items

A somewhat similar situation eo the repairable item exists where identical,

non-repairable items are used in large quantities and are replaced with new items

when a failure occurs. Examples of this are light bulbs of fluorescent tubes in

large buildings. Here the mathematical description of the density funntions of the

time to first failure, time between second add third failure, and so on are identical.

The renewal rate of Sec. 4.6 becomes the replacement rate, where the later has

the feature that all densities of time between failure are identical. Where this

feature exists, then r(t) of Eq. 4-22 and Fig. 4-5 becomes constant and equal to the

reciprocal of the mean lifetime after several generations [Ref. 20]. This is a

classical problem in renewal theory, but has limited applicability for real world

reliability analysis problems.

4.8 Bathtub Curve for Repaired Items

The familiar bathtub shaped curve, which has previously been discussed in

Sec. 4.3 for a single lifetime hazard rate where there was no repair or replacement,

is also used on occasion for repairable equipment. Typically there is no discussion

of the appropriate mathematical development [Ref. 21 , p. 24]. Such a bathtub

shaped curve for the repaired item, however, implies a different mathematical model

than for the non-repairable item. (The repairable equipment is confused with the

non-repairable part on page 19 of Ref. 22 .) A mathematical model _hich would lead to

a bathtub shaped curve for repaired items could result from application of the renewal

rate of Sec. 4.6, which is quite different from that of Sec. 4.3 based on the hazard

rate.

In Fig. 4-6 some time between failure density functions are shown for the time

to the first, time between first and second, and so on. Figure 4-7 shows

the renewal rate as well as the elapsed operating times to the first, first plus

second, first plus second plus third, and so on. Figures 4-6 and 4-7 do

not come directly from data, but are a judgement assumption which is believed to be

somewhat similar to that which would be found for some electronic equipment.
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Each of the time between failure density functions of Fig. 4-6 is assumed to be

exponential in shape, but with some differences in the mean time to failure parameters.

The first two density functions have successively increasing means, the third density

function on through a very large number, n, have the same mean, and the n+ist and

successive density functions have decreasing means. Combining these time between

failure density functions into a renewal rate is illustrated in Fig. 4-6, which has

the familiar bathtub shape.

P(t i)

i P(ti)

1 a

2 b

3 through n c

n+l b

n+2 a

ti-i t i

Figure 4-6 Exponential Time Between Failure Densities with Different Means
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Rate

#

0 t

Cumulative Operating Time

Figure 4-7 The Bathtub-shaped Renewal-rate Curve

for Repaired Items of Fig. 4-6

The flat portion of the renewal rate of Fig. 4-6 is the situation often assumed

in reliability prediction. Here the accumulated operating time does not affect the

reliability of an equipment, and the reliability model of

-_
R(t) = e

applies regardless of age. This period is also described by the Poisson process

discussed in Sec. 4.5. Exponential distributions with identical _ will alwmys result

in a constant renewal rate. On the other hand, a constant renewal rate does not mean

that the times between successive failures have an exponential distribution and that

a Poisson process exists. Recall that Sec. 4.7 noted that a constant renewal rate

will ultimately result from any stable distribution of time between failures.

One reason for going into this discussion of the widely cited bathtub curve

is to point out that a bathtub curve could arise from other than identical exponen-

tial distributions. As reliability analysis matures and is extended to a wider

diversity of commodities it will be increasingly necessary to be aware of the

possibility that non-exponential distributions might exist. For instance, data from
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a population of repaired equipment when plotted in histcgram fashion might resemble

the bathtub curve, but the distribution of time between failures need not be

exponential. Correct choice of underlying distributions can have high implications

for the accuracy of reliability predictions, for the validity of statistical tests,

and for the optimization of preventive maintenance actions based on assumed

distributions.
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5. Bound-Crossing

The type of reliability measures treated in this section are those sometimes

labeled tolerance, drift or degradation, better described as a "bound-crossing" type.

Items are designed to meet given requirements such as the output voltage of an

electronic power supply shall be 115 _ 1 volt ac and it is designated as failed if

the voltage crosses one of the bounds 114 and 116 volts ac. In a mechanical system

it may be desired to estimate the probability that the strength of an item will

exceed the stress to which it is subjected. In some environments the strength of an

item will be a function of time as a result of fatigue due to thermal cycling or

stress cycling. In this case we will be interested in the probability that at the

mission end the item will have sufficient strength to meet the applied stress. The

bound in this case is not necessarily a fixed level but may be a distribution of

stress levels.

5.1 Fundamentals

5.1.1 Notation

The notation to be used in this section will be y for a performance charac-

teristic, s for stress level or environment level, and t for time. The bound will be

denoted by £ for lower and u for upper.

5.1.2 Bound-Crossing Reliability

The probability that a performance characteristic y does not exceed the upper

bound _ is denoted by

Pu P(y ! _),

and the probability that _ is exceeded by y is

1 - P = P(y > u).
u

Similarly, Pl is the probability that y is less than the lower bound l, i.e.

PZ = P(Y ! _)" If the bound has a distribution of values such as the probability

density p(s) for stresses, then the probability that y-s exceeds O,

R = P(y-s > 0)

is a measure or index of the performance of the item. To consider more than one

performance characteristic and stress, vector notation can be replaced for the single

values y and s respectively, with due consideration for probabillstlc dependence. To

consider time the appropriate distributions become time varying, and additional criteria

of failure become possible; this will be discussed in Sec. 5.4.
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5.1.3 Distribution Types

In order to estimate the probabilities Pu and P1 it is necessary to know the

distributions of the performance characteristics and stress levels. These distri-

butions may be any one of several common distribution forms given in Appendix A.I,

e.g. normal, log-normal, uniform, gamma, etc. The selection of the distribution

form can sometimes be made on the basis of technical considerations such as positive

and negative deviations of the same magnitude are equally likely (normal), or that

the incremental changes are proportional to the measurement value (log-normal).

Refer to Ref. 15 for basic assumptions underlying some distribution forms. Often

the distributions are selected on a subjective basis to describe one's feeling about

the variation of the characteristics and perhaps more often they are chosen for

convenience of the analytical methods. The latter is often not necessary due to the

capabilities of modern electronic c_mputers and the availability of "canned" computer

programs to perform the necessary analyses as described in Volume II - Computation.

Time varying distributions for bound-crossing problems introduce additional considera-

tions which will be covered in Sec. 5.4.

5.2 Fixed Bounds

In this situation it is assumed that a distribution form can be selected which

describes the variation in the performance attribute at some specified time in its

life when used under certain environmental conditions. The distribution can some-

times be selected by basic considerations of the physical process, by fitting a few

distributions by graphical techniques, or by using more sophisticated statistical

techniques for estimating the distribution parameters. In some cases the form of

the distribution may not be specified and a distribution free or non-parametric

method used. The bounds are assumed to be known from technical considerations of the

application of the item in the system.

Example 5-1

A performance attribute of interest at the end of i0,000 hours

under specified environmental conditions is normally distributed with

mean 95 and standard deviation l0 units. For example, this might

apply to h. , an equivalent circuit h-parameter for a transistor. If
le

it is desired that hfe exceed 70, then what is the probability that a

transistor selected at random from a population of similar items and

subjected to i0,000 hours of operation under the same conditions will

have an hfe greater than 70?
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P(hfe

75 85 95 105 115
hfe

Figure 5-1 Probability Density Function for hfe

The probability that hfe exceeds 70 is

P(hfe > 70) = i - P(hfe ! 70)

70-u L
: i- _( - )

= 1 - _(

where _ : mean of hfe : 95,

o = standard deviation of hfe = i0,

and _(X) is the area udder the standard normal distribution curve to the left of X.

In this example X is -2.5 and the area to the left of -2.5 can be obtained from a

table of areas under a normal curve such as given in standard probability and statis-

tics books,

_(-2.5) : 0.0062.

Thus the probability that hfe exceeds 70 is

P(hfe > 70) : i - 0.0062 : 0.9938.

Figure 5-1 illustrates this example.
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The assumptions under which the above result was obtained are given below and should

be carefully noted when using these techniques:

(i) Normal distribution of values of hfe,

(2) Known mean and standard deviation, and

(3) Conditions of manufacture and operation of items are same as

those to which the probability estimate is to apply.

Checking the first and second assumption would depend on the source of the informa-

• tion for the hfe distribution. Often this will come from special tests for this

purpose. If so, the first assumption above can be checked graphically by plotting

the sample distribution function on normal probability paper. The extent to which

one can check the adequacy of the normality in the region of the tails depends upon

the amount of data. The second assumption is really never satisfied but for very

large sample sizes the results would be practically unaltered by using procedures

which depend on the sample mean x and standard deviation s. The third asst_ption is

of special importance to the design engineer in that he will specify the test condi-

tions to correspond as nearly as possible to those conditions under which he wishes

to infer the quality concerning the items tested.

Similar results can be obtained using other forms of distributions such as

log-normal, Weibull, extreme-value, etc. In each case the "goodness" of the distri-

bution can be checked by a probability graph of appropriate form and/or by analytical

techniques such as given in statistical texts, e.g. see Ref. 23.

5.3 Stress-Strength Model (Bound Distribution)

In this case the performance of an item is considered to be satisfactory if the

strength of the item exceeds the stress to which it is to be exposed in application.

Thus the bounds may not be fixed in that an item selected at random and used in a

specific system may be subjected to one of a distribution of stresses rather than

a known fixed stress. In actual practice the stress may vary over the life of the

item but consider for the moment that an item is subjected to a constant stress over

its life and that the stress level may vary from item to item.

The approach to this problem is to specify the stress and the strength density

functions by one of the methods of Appendix A.I. Then the parameters of the distri-

butlons are estimated and one then computes the estimate of the desired probability.

Thus in the notation suggested earlier, the strength density function is p(y) and

the stress by p(s). Then it is desired to determine the probability that y is larger

than s.
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or the equivalent

This is found by

P(y > s)

P(y - s > 0).

P(y > s) = 7p(s) [Tp(y)dy]ds (5-i)

0 s

where the range of s and of y does not contain negative values and the distributions

are independent. An example is given below in which both distributions are assumed

to be independent and normal. In this case the difference y-s is also normally

distributed and the parameters for this distribution of y-s are given in terms of

those for the individual distributions of y and s respectively.

Example 5-2

Consider a simple stress-strength analysis of a part with strength

density function assumed to be normal with mean (_) 25K psi and standard

deviation (o) 3K psi and stress distribution with mean 15K psi and stand-

ard deviation 2K psi. The two density functions are illustrated in Fig. 5-2.

Stress _df Strength pdf

15 25
K psi

Figure 5-2 Probability Density Functions for Stress and Strength
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The probability that the strength exceeds the stress is given by the probability,

P(y - s > 0),

where y is the strength and s is the stress. Now y-s is also normally distributed

with mean 1OK and standard deviation

o(y-s) = /o2(y) + o2(s)

= K 9_ = 3.6K psi.

and hence

P(y - s > 0) = p( y-s - _IOK_
3.6K

where u is a standard normal variable and thus

-10K -10K
> 3.6K ) = P(u > _ )

P(y - s > 0) = 1 - @(-2.78) = 0.9973.

One of the major difficulties in stress-strength problems is obtaining suf-

ficiently good estimates of the stress and strength distributions and hence the

difference y-s. Given these estimates the problem of estimating the probability is

a difficult one even if one assumes a normal distribution. Often the difficulty is

aided by using the estimated safety margin as a measure or index of adequate

strength-stress margin. The safety margin is

- _S
Safety Margin = Y (5-2)

/a2(y) + o2(s)

5.4 Time Dependency

The random behavior over time of a performance attribute can be visualized as

a time-varying probability density function as illustrated in Fig. 5-3. Such sketches

are sometimes used for data for a part characteristic obtained from life testing.

Where the criterion of failure is that the performance attribute y(t) go outside some

fixed bound, then the reliability measure is a straightforward extension of the approach

in Sec. 5.2 if the performance attribute drift is always either increasing or decreasing

(monotonic) such as shown in Fig. 5.4.

Here the reliability is

R(t) = Prob[y/ < y(t) < yu]

Lower case letters are used in this report for random processes and variables.
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Figure 5-3 Drift of y(t) lllustrated as a

Time-varying Density Function

y(t)

Y_t'

t----_

0

Figure 5-4 Examples of Monotonic Drift Behavior
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which is also

Yu

R(t) = f p(y; t)dy

Y£

where the integration is over y at time t and R(t) is a monotonically decreasing

function. An approximation to R(t) by performing this integration on the p(y; t)

at selected times t will often suffice. It is stressed that this approach is for a

monotonic drift. Non-monotonic drift such as shown in Fig. 5-5 introduces additional

considerations.

For non-monotonic drift first consider the failure criterion treated above where

failure is defined as the performance attribute going outside some fixed bound. If

all that is known is some p(y; t), then the drift reliability cannot be obtained.

For instance, the p(y; t) at time tI and at some later time t 2 might be identical,

but this does not mean that no additional failures have occurred because in a

population of items some which were out of bound may have drifted back in and others

may have drifted out. Therefore it is necessary to describe the time-varying

distributions of the performance attributes with a functional form. Here the

performance attribute is expressed as a deterministic function y(t) = y(£; t) where

the _ are probabilistic with known probability density p(_). This method can be

used where the drift failure criterion is a first crossing of a bound for either

monotonic or non-monotonic drift such as in the above discussions, and it also ban be

used for other criteria for non-monotonic drift such as the following:

(i) the cumulated area outside a bound(s),

(2) the number of crossings of a bound(s),

(3) the cumulated time outside a bound(s).

The approach for non-monotonic drift is to reduce the failure criterion to a first

crossing problem. A new function w(t) is defined such that reliability becomes

R(t) = P(y£ < w(t) < y_).

As an example, Fig. 5-5 illustrates the last failure criterion of the amount of time

that y_t) is outside the bounds. Here a corresponding function w(t) is defined, and

the failure criterion becomes w(t) first crossing a specified level w . Other w(t)

functions could be established for other failure criteria.

An example of a possible mathematical form for describing the performance

attribute is the polynomial expression y(t) = b 0 + b I t + ... + bn tn where the b's

are random variables of the same sign for monotonic drift and of mixed signs for

non-monotonic drift. Trigonometric series offer forms for periodically varying

attributes.



a) Attribute Behavior

y(t)

Y_

Y_

0

J
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i
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b) Special Function for Defining Failure

w(t) : time that y_ > y(t) > v"
"' U.

w(t)

w u
_ailure

/
for w(t) > w u

0 t

Figure 5-5 Example of Non-monotonic Drift Behavior and One

Possible Method for Defining Failure
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In some situations where the drift of the performance attribute is non-

monotonic it may be represented by a stochastic process. Such a situation could be

the error in a system output. For example, a stationary Markov Gaussian noise

process may be completely described by its auto-correlation function or its power

spectral density. An experimental application has been made using this general

approach for the error in a tilt stabilization assembly for an airborne radar antenna

[Ref. 24]. A recent theoretical book [Ref. 25] discusses various reliability

indices for stochastic processes.

The discussion in this section is about fixed-bounds. The reader who is

interested in time-dependent problems where the bound is a distribution (such as

in Sec. 5.3 for the stress-strength problem) would find some guidance in the

discussion of Part IV. The basic idea would be to treat both the performance

attribute and the bound as independent variables in a deterministic function. The

dependent variable then becomes a single performance attribute which has a fixed

bound for the failure criterion. For example, let w(t) = y(t) - s(t) where y is

the strength, s is the stress, and w is the new performance attribute which has

the bound w(t) > 0.

Two examples follow where the performance attribute is a time-varying normal

distribution. In these examples the performance attributes are of the form

y(t) = y(_; t) where the _ are normally distributed.

Example 5-3

Suppose that the resistance of a particular electrical resistor

changes over the interval 0 < t ! T according to

where

r(t) = Sl + a2 t ohms

_i is normal with mean 330_ and standard deviation 33_,

=2 is normal with mean -O.003_/hour and standard deviation

0.001_/hour.
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Let r(t), the resistance at time t be the performance measure of interest

and hence r(t) is also normally distributed with mean and standard devia-

tion,

_{r(t)} =

a{r(t)} =

5330 - 0.003t)_

1/2

{(33) 2 + t2(.001) 2} n.

{1089 + 1 × lO-6t2}i/2n.

For t = 1000 hrs.,

u{r(1000)} = 327n

o{r(lO00)} = (1090) 1/2 -" 33R.

and the density function of resistances at i000 hrs. is shown

in Fig. 5-6.

261 294 327 360 393

Resistance (R)

Figure 5-6 Probability Density Function of Resistance at t = I000 Hours.

If the reliability were defined as the probability that the resistance

lies between 270 and 390, then it would be given by the following, at

t = 1000 hours,

= _(1.91) - _(-1.72) = 0.97 - 0.04 = 0.93,

where @(x) is the cumulative standard normal distribution function

obtained from standard texts.
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Example 5-4

Suppose that a mechanical part under consideration has a strength

which decreases with time in accordance with some function of time under

stress. Let the strength be described by

y(t) = _i e-kt + _2(l-e-kt)

where e_ is the initial strength, _2 the strength as t-_, k is a
constan_ determined by the particular part. Let also

_i be normally distributed with mean 50K psi and
standard deviation 4K psi,

_2 be normally distributed with mean 20K psi,

standard deviation 2K psi and assume that

it is correlated with y(0), i.e. p = 0.90,

and

k = 0.001.

Thus y(t) is also normally distributed with mean

-0.001t -.001t)]_{y(t)} = [50K e + 20K(l-e psi,

and standard deviation

-0.002t .001t)2o{y(t)} = {42K 2 e + (l-e- 22K 2

-0.001t
+ 2(0.90) e 4K • 2K(l-e-0"001t)}i/2psi

= K{5.6e -0"002t + 6.4 -'001t + 4}i/2psi.

For t = i000 cycles, _{y(t)} = 31,000 and o{y(t)} = 2670. If the

prescribed lower limit were yf = 30K psi, what is the maximum number
of cycles to which the part sNould be exposed in order that the

probability of its strength exceeding 30,000 psi will be 0.95?

To solve this problem we must find t such that

_{y(t)} - 1.645 • o{y(t)} = 30,000

-0.001t -.001t)50K e + 20K(1-e - 1.645K [5.6e -0"002t + 6.4e -0" 001t + 4]1/2

- 30K = 0.

By graphing the left member of the above equation one can estimate

the time t at which the curve crosses the axis and hence obtain a

more exact solution analytically if desired.
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Figure 5-7 Strength Versus Elapsed Time

The number of cycles is estimated to be 700. It should be emphasized

that in this example the initial strength and final strength were

assumed to be highly correlated and that was considered in the analysis.
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6.0 Numerical Index Values

Guidance is given in this section for obtaining numerical values to be used

for the various single item reliability indexes which were introduced in Secs. 4 and 5.

Numerical index values (or data as they are sometimes referred to) result from actual

measurements, either from operational use or from testing. Reliability index measure-

ment is at best difficult. Most attempts at it suffer from lack of precision in the

failure criteria, in recording the operating conditions, and in knowledge of the

history of use of the item. It is desirable to keep in mind such loose conditions

under which the data for most reliability indexes was obtained so as not to exaggerate

their accuracy.

6.1 Comprehensive Guide

A recent Navy-sponsored effort to identify reliability data sources gives

elaboration on sources of reliability data and specific information regarding where

to direct inquiries [Ref. 26]. This is a comprehensive guide and identifies many

sources for direct reliability indexes as well as for supporting reliability data.

6.2 Reliability Measure Sources

Index values for failure rates and other reliability measures as were identified

in Sec. 4 are treated here. Almost universally these data are for an assumed constant

failure rate for nonrepairable items and for an assumed mean-time-between-failure of

the Poisson process for repairable items.

MIL HDBK 217A. This is a widely used and generally available source. Typically

the failure rate of the nonrepairable item is for an electronic part and is shown

graphically as a function of several stresses, with additional multipliers to be used

for different classes of operational use. The latest revision of this is dated

December i, 1965, and is revision A [Ref. 27]; however, as of this date another

revision is in process.

MTBF Estimating Relationships. Simple MTBF estimating relationships have been

developed for electronic equipment and are quite useful for preliminary predictions.

Here the independent variables may simply be the number of active elements and the

usage class of the equipment [Refs. 2 and 27].

FARADA. The focal point of reliability data is the Failure Rate Data (FARADA)

program which is sponsored by the Tri-service and NASA in cooperation with qualified

government contractors. This program is currently conducted by the Naval Fleet

Missile Systems Analysis and Evaluation Group (FMSAEG) at Coronado, California

[Ref. 28]. Data inputs from hundreds of sources are collected, compiled and distri-

buted. The primary distribution is in the form of a series of handbooks.
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Reliability Analysis Central. The Air Force Rome Air Development Center is

currently developing a Reliability Analysis Central which is planned to become fully

operational by mid 1969 [Ref. 29]. The Central is to serve as the Air Force focal

point for reliability data.

Non-electronic Data. The data sources noted to this point in Sec. 6.2 are

primarily electronic in nature. Generally there is more electronic data than for

other con_nodities and failure causes. Some compilation of non-electronic reliability

data are Refs. 30 and 31 sponsored respectively by the Navy and Air Force. The

Air Force-sponsored work is still in progress.

6.3 Bound-Crossing Data

Distribution information to be used with the bound-crossing type of reliability

measure of Sec. 5 is con_nented on below. The degradation type of failure mode is

often not explicitly considered in reliability predictions for electronic items, and

there are few established data sources for this failure mode. The FARADA program

and the developing RADC Reliability Analysis Central include degradation and drift

data under their scope of activity, though not much data are yet included. Equipment

and system producers who perform degradation studies have, of course, compiled some

numerical information. Sometimes this is made publicly available to others [Ref. 32].

Non-electronic reliability predictions of the bound-crossing variety are principally

the stress-strength problem. An Air Force-sponsored compilation of appropriate data

for such predictions has been recently published [Ref. 33]. The data here are

primarily for distributions of fatigue strength of various mechanical material.

6.4 Remarks

An undesirable feature of currently available data is that too often it is a

matter of collecting and passing on what has been reported without very much analysis.

One reason for this is that the inputs coming into these collection points are often

lacking in supporting information so that analysis is not possible. As the previously

mentioned FARADA program continues to progress and as the Reliability Analysis Central

becomes established, it can be expected that there will be more screening and analysis

on what is ultimately made generally available. An example of the type of data col-

lecting and analysis which is desirable was recently performed for NASA and was

concerned with historical reliability data from inflight spacecraft [Ref. 34].

Many equipment suppliers are currently collecting and analyzing reliability

data on equipment which they have produced. This sort of data collection effort is

extremely desirable and is to be encouraged. If the samples from which such data are

drawn are of sufficient quantity, the opportunity exists for developing data that can

be drawn on by the equipment suppliers to give more precise results.
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The person who is interested in reliability data should keep his eye open in

the general literature. Occasionally a paper or report will contain preliminary data

of the sort which is not in the established data sources. As an example, consider

the human failure mode. A recent paper remarked that a certain percentage of actual

failures were found to be caused by human error [Ref. 35]. Certain reliability pre-

dictions would be better off to include such failure modes with best available index

values rather than to omit them.
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Part III: Multi-Item Problems

Various approaches for developing reliability prediction equations for system

reliability as functions of item reliabilltles and other variables are presented.

These are the conventional and classical ones which are suitable for practical

applications. Inputs to these equations are the single item reliability definitions

from Part I.

Section 7 covers logic models, time is explicitly brought into consideration

in Sec. 8, and Sec. 9 covers the influence of environments which are known probabilis-

tlcally and bound-crosslng problems. This material will, to varying extents, be

old-hat to experienced reliability analysts. However, some of it is not stressed

in existing reliability analysis handbooks or books; including the following: In

Sec. 7 are the use of cuts and paths for developing prediction models for complex

configurations and the problem of models for multl-phase missions. In Sec. 8 the

extreme value approach is discussed in a general manner and a general reliability

prediction model is derived (first known publication). In Sec. 9 are discussions

of the influence of environment which is known probabillstlcally and a specific

application of this to the multl-ltem stress-strength problem.

Reliability prediction equations have the apparent use of providing a nomerlcal

reliability prediction index for a proposed system configuration. Although the details

contained in this report explicitly cover only this use, it is well to be aware of

other applications. These include: Using the model for sensitivity studies in order

to study the results of changes in input parameters by either limit or probabillstic

approaches. An approach could involve application of the method of moments such as

cited in Sec. 9.3.1 for a different problem. Another use is to provide part of the

equations needed for the application of literal optimization approaches to reliability

allocation problems. This use prompted the derivation of the general redundancy model

of Sec. 8.4. Yet another use is that certain practical engineering guidelines can be

gleaned from studying the models. An instance of this is the outline at the end of

Sec. 9.2 for multi-ltem stress-strength problems.

It should also be noted that the discussions of Secs. 7, 8, and 9 are oriented

mainly toward bringing items together into a system. These modeling concepts are,

of course, the same ones which would be utilized for bringing detailed failure-modes

together, where an item might have multiple failure modes such as were acknowledged

in Secs. 4.1 and 4.3. Some treatment of modes will be given in Sec. 7.6 on N-state

logic models and in Sec. 9.1 on the general question of the influence of environment.

Part IV will pursue detailed consideration of failure modes.
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7. Logic Models

The purpose of this section is to develop prediction models for multi-ltem

systems using logic modeling approaches. The system being modeled could be a

completely general one. Conventionally the system model includes only hardware,

but the model could be extended to include human operators, environments, signals,

loads, or other factors which may affect the achievement of system success.

Although the techniques given are applicable to large complex systems as well as to

lower level equipments, the discussion will be about systems containing only a

limited number of items so that it can be followed readily.

Probability of item success or failure for the logic based system models would

come from the appropriate measure of Part II. However, attention must be given to

probabillstic independence assumptions. The approaches in Sec. 7 are for the

situation where operating conditions (or environments) are assumed to be known, or

if they are unknown, item reliabilities are independent of this uncertainty. There

still could be dependence among the probability of success for items at fixed

operating conditions, and if it exists then it must be reflected in the logic models.

The reliability logic diagram such as shown in Fig. 7-1 and throughout Sec. 7

is a useful starting place for the discussion. In the reliability block diagram

each block is a two-state item (non-failed or failed). The manner in which the

blocks are connected describes the non-failed system in terms of the items comprising

the system.

Organization of this section is to introduce first the basic set operations

in Sec. 7.1 and then to apply them to various system configurations throughout the

remainder of this section.

7.1 Basic Set Operations and Calculus of Probability

In order to predict the reliability of a system given the reliability logic

diagrmm and the probabilities of success (or failure) of the individual items,

it is necessary to understand basic set operations and the associated calculus of

probabilities. See Appendices A.4 and A.5 for a brief introduction to these

techniques and a summary of basic results. For example, suppose that the system

under consideration is composed of three items, A, B, and C in a series logic as

illustrated in Fig. 7-1 below.

° l v y

Figure 7-1 Series Logic
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The successful operation of the system is equivalent to each of the items operating

or not failing. Let A denote the event that item A is operating, B and C similarly

denote successful operation of items B and C. In this terminology A represents the

event of successful item operation. The event that all three items operate is

denoted by the logical intersection of the events A, B, and C and is denoted by

ANBNC

or simply

ABC.

Now let the probability that item A operates under stated conditions be P(A), and

similarly for B and C. The probability that all three items perform successfully

is given by

P(A) P(B) P(C),

provided the events A, B, and C are independent, that is, that the occurrence of A

does not in any way alter the probability that B occurs, etc. with respect to the

other events. Further discussion concerning the notion of independence is given in

Appendix A. 4 . If the events are not independent the probability may be written as

P(A) P(BIA ) P(CIAB )

where P(BIA ) is the probability that B occurs given that A has occurred. In this

section the independence assumption will be used very liberally because of the

resulting complexities in not using this assumption, and also because the items

can sometimes be defined such that the assumption of independence is reasonable.

However, the user of the techniques should not automatically assume independence

without some self-questioning.

If the system consists of three items as illustrated below

Figure 7-2 Mixed Logic

The simpler notation i.e. ABC will be used, and the alternate notation i.e. AfIB(]C

is cited in this introductory discussion so that the reader will be aware of it, as

this alternate notation is also widely used.
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then the components B and C are said to be in parallel. The successful operation of

the system is equivalent to the operation of (A and B) or (A and C); expressed in

another way it may be stated as the operation of A and (B or C). Thus the logical

rules may be stated as

(A (_ B) _9 (A (_C) or AB + AC

or

A(_ (BUC) or A(B + C).

The symbols for the intersection or product are Af_B or AB as were used above for

series logic and for the sum or union are AUB or A + B. The first expression may

be obtained from the latter by performing the logical multiplication of A with the

union of B and C. The probability that the system performs successfully is given

by the

P[A(B + C)]

or

P(A) P(B + C)

if A, B, and C are independent. The probability of B + C is the probability that one

or the other or both of the events B and C are successful. One rule for finding the

probability of B + C is

P(B + C) = P(B) + P(C) - F(BC).

This can easily be seen by using the following Venn diagram. Let B and C be denoted

by the overlapping events as shown below.

Figure 7-3 Overlapping or Intersecting Events
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The shaded portion represents the intersection of B and C and if one obtains the

P(B) and adds the P(C) one sees that the P(BC) is counted twice, thus it must be

subtracted f_om the added probabilities to obtain the P(B + C), which is the

probability ass_clated with the occurrence of all events enclosed by the boundaries

of the events B and C.

Another way in which one can obtain the probability of the successful operation

of B + C is to use the fact that failure occurs only if both B and C fail, i.e.

B C. Thus

P(B + C) =" i - P(B C)

= 1 - F(B) e(_)

assuming independence. Note that since B and B are complementary events, that is,

one or the other of these events must occur, then

P(B) + P(B) -- 1

or

P(B) = i - P(B).

The following numerical examples are given for illustrating the notions introduced

so far.

E_ample 7-i

Let the system be as follows:

Figure 7-4 Logic Diagram for Example 4-1
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Let P(A) = .99, P(B) = .95, P(C) = .90, and P(D) = .95 and assume

that the events are independent under the given operating conditions. Then

the successful operation of the system is given by

P(S) = P[AB(C + D)]

= P(AB) [P(C) + P(D) - P(CD)]

= 0.9405 [0.90 + 0.95 - 0.855]

= 0.9405 [0.995]

= 0.936 (rounded to 3 decimal places).

The same result is obtained by using the complementary event and thus

P(S) = P(AB) [I - P(_) P(D) ]

= 0.9405 [i - (.10)(.05)] = 0.936 as before.

The latter way is usually simpler and will be used throughout this section with few

exceptions. Again the reader is cautioned that the use of the above formulas implies

independence of the events A, B, C, and D.

The set of items A, B, and C may be considered a success path or path (success

understood) and likewise A, B, and D constitutes a second success path. The system

will fail if either A, B, or C and D fail, and these three sets of items constitute

cuts of the equipment. In Sec. 7.4 the notions of paths and cuts will be used to

obtain bounds on the probability of success (or failure).

Certain diagrams may be used to aid in the probability calculations and

interpretation. Consider the use of a tree diagram for Ex. 4.1 above.

A A

Fail

D D D D

Success

Figure 7.5 Tree Diagram for Example 4.1
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The probability of success is given by

P(A) P(B) [P(CD) + P(D_) + P(CD)].

Such tree diagrams can be easily sketched with experience and the probability

expressions written down by hand. However, such techniques would be limited to

relatively simple systems. It will be assumed here that for very complex systems

one will use a computer program solution. However, the needs exist for a basic

Understanding of the techniques in order not to incorrectly apply a particular

technique. Ref. 36 presents a more detailed discussion of the tree diagram approach.

Another approach which can be applied to relatively simple systems is that of

using Boolean algebra, an algebra of sets. Just as one can perform operations of

addition with sets or events as above. Ref. 37 presents a complete discussion of

this approach. A brief discussion o_ Boolean algebra is given in Appendix A.5.

7.2 Applications to Various System Configurations

In this section the concepts of Sec. 7.1 will be applied to logic configurations

where the model can be written by simple visual inspection.

7.2.1 Series Configuration

If the items of the system are in a series configuration, that is, if each

item must operate in order that the system will successfully perform its function,

then the probability of success is given by

P(S) = P(AIA 2 "'" An )

where there are n components in series configuration as indicated in Fig. 7-6:

Figure 7-6 Series Configuration

If the events AI, A2, ..., An are independent then

P(S) = P(A I) P(A 2) "°" P(A n)

n

-- illl P(Ai). (7-1)
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If all the items have very high reliability a useful approximation is that

n

P(S) = 1 - i_l P(_i )" (7-2)

If all the items are identical then Eq. 7-1 becomes

P(S) = [P(A)] n = [i - P(A)] n. (7-3)

In fact it can be shown that the approximation Eq. 7-2 is a lower bound to P(S), i.e.,

P(S) > 1 - n P(A),

where all the items are identical.

7.2.2 Parallel Configuration

If several items are in parallel, that is, the system operates if one or more

of the items operate, then the probability of successful operation is given by

P(S) = i - P(all components fail)

n

= 1 - i_ 1 P(Ai) , (7-4)

where a parallel configuration is illustrated below.

Figure 7-7 Parallel Configuration
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Another configuration might be one which requires at least k out of n success-

ful items in a parallel configuration in order for the successful system operation.

In this case the probability of success is given by the following if all the items

are identical.

or

P(S) = iEk pi(A) [i - P(A)] n-i (if all itmes are identical) (.7-5)

PiS) -- 1 - i$0 (A) [i - P(A)] n-i, (7-6)

where(i ) is the number of combinations of i items taken from n items, that is,
% I

o- i! (n-i)! " (7-7)

Eq. 7-6 would be easier to apply if the k were small compared to n. A similar expres-

sion may be written in the case of non-identical items: however, the case of identical

items is more typical. Such formulas are useful for a system such as a nuclear

reactor in which one needs only a certain number of control rods to shut down the

reactor, or in the case of an airplane which needs only two engines of four in order

to take off, or in majority voting logic schemes.

It is important to note that independence is assumed in the above approaches.

In particular, if all the items were subjected to a critical environment during the

mission, then the events of failure may not be independent as assumed above. Similarly,

if failure of one item increases the stress and thus the probability of failure of

another item, the independence assumption may not be correct.

7.2.3 Mixed Configurations

Parallel-Series. A parallel-series configuration is as shown below in Fig. 7-8.

Figure 7-8 Parallel-Series Configuration
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, o mu8 tThe probability of success is given by using the fact that either A I .., A n

all operate or BI, ..., Bn must all operate or both. The simpliest approach is to

first apply the series formula replacing AI, ... A by A and BI, ... B n by B, thusn

reducing to the more simplified versions shown in Fig. 7-9.

Figure 7-9 Reduction of Configuration in Fig. 7-8

Thus

and

n

P(A) -- i_l P(Ai)

n

P(B) = i_l P(Bi)"

Then one uses Eq. 7-4 for parallel configurations to obtain

P(S) = I - P(A) P(B)

or in expanded form

P(S) = i - [i - P(A)] [i - P(B)]

n n

= 1 - [i - i_ 1 V(Ai)] [i - i_l P(Bi)]'(7-8)

In this approach one has a tool for simplifying complex circuits of systems step-

by-step until it is reduced to a relatively simple logic configuration. The same

approach will be applied to some other examples below.

Series-parallel. Let there be a subsystem of m items in parallel and n of these

subsystems in series as shown in Fig. 7-10.
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-- 000

Figure 7.10 Series-Parallel Configuration

The probability of success for the it__h_hsubsystem A i containing m identical

items in parallel is given by

m

P(A i) = 1 - J_l P(Aij)

and the new simplified configuration becomes that shown in Fig. 7-11.

Figure 7.11 Reduction of Configuration in Fig. 7.10

As the A i are in a series configuration

n n m

P(S) = i_l P(Ai) = i_l (i - J_l P(Aij ))" (7-9)

It is not necessary to treat the m i as being equal to m for all i, and the above

formula could be generalized by replacing the m by m i, i = i, ..., n. Many con-

figurations can be treated by one of the above configurations. Two examples are

given below to demonstrate some of the formulas, although the examples are worked

from basic considerations.
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Example 7-2

Let the configuration be as shown in Fig. 7-12.

where

-- DI -- D 2 --P_ _I
Figure 7-12 Configuration for Ex. 7-2

P(A) = 0.99

P(B I) -- P(B 2) = .90

P(C) = 0.95

P(D I) -- P(D 2) = .98.

and the events are assumed to be independent.

Now

P(S) = P(A) P(B)(I- P(C) P(D))

where

P(B) = I - P(B 1) P(B2)

P(D) = i - P(D) = 1 - P(DI) P(D2).

Note that one cannot write P(D) = P(D_) P(D--_), that is the event D fails

is not equivalen---_-_o D. and D^ both f_iling_to operate, but that either

one or the other or bob fail_ng to operate. Substituting the numerical

results yields

P(S) = (0.99) [(i - (0.i0)(0.i0)] [i - (0.05)(1 - .982)]

= 0.933.

65



Example 7-3

Let the configuration be as shown in Fig. 7-13

Figure 7-13 Configuration for Ex. 7-3

and the associated probabilities be

P(A) 1 0.95, P(C) = 0.98, P(B 1) = P(B 2) = .95,

P(D) = 0.90, P(EI) = P(E 2) = 0.90.

Then if the above is replaced by

Figure 7-14 Reduction of Configuration for Ex. 7-3
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-- D

P(S I) = P(A)(I - P(B I) P(B2))

= (0.95)(1 - (.05) 2) = 0.9476

P(S 2) = P(C)(I - P(D) P(E))

= (0.98)(1 - (0.10)(1 - (.90)2)) = 0.961.

7.3 Conditional Probabillstlc Approach

We have seen from the above discussion that when the reliability logic diagram

consists of series, parallel, and/or mixed configurations, the mathematical logic

model can be written directly and easily. However, complex systems cannot always be

reduced to a convenient configuration as stated above. In such cases it may be

convenient to use the fact that the probability of success of the system given a

particular state of the subsystem (which may be for either one item or a collection

of items or an environmental state) multiplied by the probability that the subsystem

is in the particular state. This result applies when the states Bi, i = i, ..., n

of the subsystem are exhaustive and mutually exclusive, that is

and

P(B I + B 2 + B 3 + ... + Bn) = i

(the B's include all possible events or occurrences)

BIB j = 0

(the B's are mutually exclusive or have no common occurrences).

Hence the system success probability P(S) is given by

P(S) = E P(SIB i) P(BI). (7-10)

The proper selection of the B i, i = i, ..., n can aid in the solution of the problem.

Essentially one wishes to select the states B i such that the logic diagram reduces to

a form for which the probabilistic model can be written easily. See Ref. 38.

Example 7-4

Consider a system of five (5) items functionally arranged in the

configuration shown below. The success paths flow from left to right,

and there are no right to left portions in a success path. Success

paths are AIA5, A2A3A 5, and A2A4, but AIA3A 4 is not a success path.

67



v
Figure 7-15 Functional Diagram for Ex. 7-4

The solution using conditional probabilities is given first and then a Boolean

algebra approach is shown in order to illustrate the difference.

Usin$ Conditional Probabilities

Select events B 1 = A2A5, B 2 = A2A5, B 3 = A2A5 , B 4 = A2A 5 which are disjoint

(mutually exclusive) and exhaustive. The selection of items is quite arbitrary.

One could just as easily write the probabilistic model using other items. Now

and

P(B i Bj) = 0 i # J,

P(B I + B 2 + B3 + B 4) = i

i, j --i, 2, 3, 4

or

P(A2A 5 + A2A 5 + A2A5 + A2A 5) = i.

The reliability logic diagram can be simplified as indicated below for the various

states of items A 2 and A5. The conditional probabilities of success given the

various states B i are given in the last column of Table 7-1 where Pi and qi denote

the probabilities of successful operation and failure under stated conditions of

the respective items Ai, i = i, ..., 5. The system success probability may be

expressed as

P(S) = p2P5(l - qlq3q4 ) + p2q5(P4 ) + q2P5(Pl ) + q2q5(0)

= p2P5 - p2PSqlq3q 4 + P2q5P4 + q2P5Pl
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and after some algebraic reduction using p = 1 - q

P(S) = plP5 + p2P3P5 + p2P4

State

- plP2P3P5 - plP2P4P5 - p2P3P4P5

+ PlP2P3P4P 5.

Table 7-1

Conditional Logic Diagrams and Associated Probabilities

Conditional Probability

Logic Diagram of Success

B I E A2A 5 _- i - qlq3q4

B 2 - A2A 5 -" A4 -- P4

B3 E A2A5 -- _--i -- Pl

B 4 _ A2A 5
e No Success Path ; 0
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Usln_ Boolean Al_ebra

The Boolean algebra success model is

P(S) = P{AIA 5 + Am[A3A 5 + A4] }

= P_AIA 5 + AmA3A 5 + A2A41 •

and expanding using Theorem 4 of Appendix 4 and substituting the item success

probabilities p will yield the same results as were obtained above using conditional

probabilities.

7.4 Models Using Cuts and Paths

The concept of cut sets and success paths (or tie sets) offers another approach

to the development of reliability prediction models for systems having complexities.

In particular this approach is advantageous where the same item may appear more than

once in the reliability block diagram. Such a situation could arise where a system

must perform a n_nber of functions but some items are used in more than one function.

Here a different reliability logic diagram could be prepared for each function where

the same item will appear more than once. Another situation could arise where

different functions are to be performed by the system during subsequent mission

phases, thus leading to a different reliability logic diagram for each phase where

the same item will appear more than once. The cuts and paths approach can be used

to obtain an exact model, but this will usually be quite involved and the advantage

is that an approximate model can be readily developed. The more important results

are given in this section as derived in Ref. 39. The system reliability is

defined as the probability of successful function of all of the items in at least

one tie set or the probability that all cut sets are good. A tie set or success

path is a directed path from input to output as indicated in the simple system in

Fig. 7-16A. The tie sets or success paths are 2, 5; i, 3, 5; and I, 4, 5, respectively.

A cut set is a set of items which literally cuts all success paths or tie sets.

One is normally interested in the minimal cut set; i.e., the smallest or minimal set

of items such that the elimination of any one item would no longer make it a cut.

This is because a nonmlnimal cut set corresponds to more item failures than are

required to cause system failure. In the above example the minimal cut sets are

i, 2; 2, 3, 4; 5. Note that I, 5 is not a minimal cut set since 5 is already a cut

set and is a subset of i, 5. A cut set cuts the llne of communication between input

and output. A cut set is good if at least one of its elements is operative. The

system failure probability or system unreliability is the probability that all tie

sets are bad (a tie set is bad if at least one item fails) or the probability that
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at least one cut set is bad (that is, all its items are bad). Hereafter, cut set

will usually mean minimal cut set.

Let Ti, i = I, ..., I denote the tie sets, I in number; and Cj, j = i, ..., J

denote the cut sets, J in number. The above statement for system reliability R can

be expressed as follows.

or

R = P{T 1 + T 2 + "'" + T I} = P{at least one tie set is good} (7-11)

R = P{CIC 2 "'" Cj} = P{all cut sets are good}.

J

The sets Cj, j = 1 ..... J contain common items and thus R # J_l P{Cj}.

Equivalently the unreliability is expressed as

or

i - R = P{TIT 2 ''- TI } = P{all tie sets are bad}

i - R = P{CI + C2 + "'" + C J} = P{at least one cut set is bad}.

Similarly the tie sets Ti' i = i, ..., I contain common items and thus

I

i - R # iH I P{Ti }.

(7-12)

(7-13)

(7-14)

--F]--

Figure 7-16A Simple Reliability Logic Diagram

: OUT
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I.L__ j5
4

Figure 7-16B Reliability Graph Corresponding to Functional Logic Diagram

Formulas 7-12 and 7-13 are not convenient for computation as the cut and tie sets

contain covmnon items. The probability that all cut sets are good (or that all tie

sets are bad) cannot be obtained by multiplying the individual probabilities that

the cut sets are good (or that the tie sets are bad). The "good" (or "bad") cases

must be enumerated in order to perform the required computation and the corresponding

probabilities added. However, this approach does not lend to a computerized approach.

The formulas 7-11 and 7-14 can be expanded into a sum of probabilities associated

with one set, two sets, etc. as shown in standard probability texts. These expanded

forms can then be "chopped off"at desired points to obtain bounds to the system

reliability. The above are exact formulas for the system reliability and unreliability.

Bounds can be obtained by using the basic probabilistic inequalities given below.

A computer program, which is described in Vol. II - Computation, has been developed

for Eqs. 7-20 and 7-21 and for further generalizations of these bounds.

R = P{T 1 + T 2 + "'" T I} ! Z P{TI},
(7-15)

R = P{T 1 + T 2 + "'" T I} _ E P{T i} -
Z P{TilTi2},etc.(7-16)

il<i 2

Thus an upper bound RUI and a lower bound RLI to the reliability are respectively

_i = Z P{Ti} (7-17)

_i = Z P{Ti} - Z P{TilTi2}. (7-18)
il<i 2
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In the same manner another upper bound is obtained,

RU2 = Z P{Til} - Z P{ } + _ }. (7-19)
il<i2 TilTi 2 ii<i2<i3 P{TilTi2Ti 3

The summations are over all possible combinatlons of the subscripts taken 2 at-a-time,

3 at-a-time, etc.

Similarly the inequalities of Eqs. 7-15 and 7-16 can be applied to the cut-set

form of the equation for unreliability of Eq. 7-14 to obtain

1 - R <_ T, P{Cj}

or

R _ i - E P{Cj} = _2 (7-20)

and by using two terms

R <_ 1 - 7.. P{"Cj} + y. p{CjlC j } = RU3. (7-21)
jl<J2 2

Example 7-5

Consider the reliability graph given in Fig. 7-11. Assume

independence between items and let the probabilities of success

for each of the items be p] = 0.93, p^ = 0.86, P3 = 0.92, p. = 0.95,

P5 = 0.98. The probabilities for theZties and cuts are as _ollows:

and

P{Tl} = P{2 5} = 0.8428

P{T2} = P{I 3 5} = 0.8385

P{T3} = P{I 4 5} = 0.8658,

P{CI} = i - P{Y 2} = i - .0098 = 0.9902

P{C2} = 1 - P{2 3 4} = i - 0.00056 = 0.99944

p{C 3} = 1 - P{5) = 1 - 0.02 = 0.98.

73



Upper and lower bounds for the reliability are given by using Eqs. 7-17,

7-18, 7-19, 7-20, and 7-21, respectively,

_i = P{Ti} > 1 (not useful as _i <--I.)

_i = 0.843 + 0.838 + 0.866 - P{I 2 3 5} - P{I 2 4 5} - P{I 3 4 5}

= 0.2848

_2 = 0.2848 + 0.6850 = 0.9698 = R (This result is equal

to the system reliability)

_2 = I - P{Cj} = 1 - 0.03036 = 0.96964

u_'3 = 1-E P{Cj} + E P{CJlCJ2 } = i - 03036 + 0.00024 = 0.96988.

= 0.96988.

As stated by Messinger [Ref. 39] the bounds based on the cut sets are best

in the high reliability region and those based on the tie sets are best in the low

reliability region. Hence the bounds RL2 and _3 are the preferred bounds in the

above example and _2 in this case saves no computation as it is the exact probability

of system success, as there are only three tie sets and the bound uses all combina-

tions of tie sets up to and including three sets.

In more general problems in which there are J cut sets the number of terms to

be obtained in the lower and upper bounds computations are J and J(J-l)/2 respec-

tively. This is compared to 2J-i terms obtained by expanding either Eq. 7-11 or

7-14 using tie sets or cut sets respectively.

7.5 Multi-Phase Mission

The approaches given thus far in Sec. 7 are applicable to a given mission phase

and more general treatment must be given to certain multl-phase missions. This

approach is useful for the type of situation as experienced in a lunar orbit

mission or lunar landing and return mission in which the environment and the

configuration changes with the successive phases of the mission. In such a mission

an item used in several phases may have different probabilities associated with each

phase. Consider the following configuration for example.
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Phase I Phase 2 Phase 3

---e

Figure 7-17 Multi-phase Configuration for Ex. 7-6

If the event of success in phase i is denoted by P(SI) , and similarly for phases

2 and 3 by P(S 2) and P(S3) , then the probability of mission success P(S) is given

by the following relationship

P(S) = P(SIIE I) P(S21E2;S I) P(S31EB;SI,S2),

which can be written in general form for p phases

P(S) = P(SIIE I) "'" P(SplEp;SI,S 2 ..... Sp_l). (7-22)

These formulations guide the computational procedure so as to include the effects of

environmental stresses in the Jth phase and the previous stress history in phases

j-l, j-2 .... , i, having obtained the probabilities for the items in each of the

phases. Usually one has to enumerate all of the conditions for each phase and sum

the products of the conditional probabilities over possible combinations of conditions.

One approach is patterned after that given in Sec. 7.3 and is illustrated in the

following example.
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Example 7-6

Consider the example given in Fig. 7-17. Let the probabilities

of success for the various items in phases i, 2, and 3 of the mission

be as given in the following table.

Phase 1

P(IIE l) = 0.99

P(2IE I) = 0.95

P(3[E 1) = 0.94

P(41E 1) = 0.98

Phase 2 Phase 3

- P(21E3,SI,S 2) = 0.92

P(BIE2,SI) = 0.96

P(41E2,S I) = 0.99

P(51E2,S I) = 0.97

P(61E2,SI) = 0.94

- P(71E3,SI,S 2) = 0.97

- P(81E3,SI,S 2) = 0.96

For this example consider the various ways in which success in Phase 1

can occur. They are:

i)
2)

3)
4)
5)

all items (i, 2, 3, and 4) operate for Phase i,

items i, 3, and 4 operate and 2 fails,

items i, 2, and 4 operate and 3 fails,

items i, 2, and 3 operate and 4 fails, and

items 1 and 2 operate and 3 and 4 fail.

All other combinations of successes and failures will result in failure

of Phase i. For each of the above conditions it is necessary to obtain

the conditional probability of success in Phase 2, and similarly in

Phase 3. There is a slight simplification in this example in that no

common items are contained in Phases 2 and 3, hence it is not necessary

to consider all of the possibilities in Phase 2 prior to obtaining the

conditional probabilities in Phase 3. Consider now the conditional prob-

abilities for Phase 2 for each of the conditions given above and in

environment E2 .
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Case i) P(S21SI, E2) = P(5 or 5-6 or 5-41E 2)

= 1 - P(3) [i - P(5) {i - P(6) p(4)}]

where P(3) indicates the probability of failure of component 3, P(5) success of

item 5 in Phase 2, etc.

Case 2) Same as for case 1 as item 2 does not appear in Phase 2; however, Phase 3

is altered.

Case 3) P(S21SI, E2 ) = P(5.6 or 5.4)

= P(5) P(6) + P(5) P(4) - P(4) P(5) P(6)

Case 4) P(S21SI, E2) = P(3 or 5.61E 2)

= P(3) + P(5) P(6) - P(3) P(5) P(6)

Case 5) P(S21SI, E 2) = P(B'6]E 2)

= P(5) P(6)

Similarly one can analyze Phase 3 subject to the five (5) conditions of success

in Phase i. The corresponding conditional probabilities are as follows:

Case i) P(S31SIS2E 3) = P(7.8 or 7.2)

= e(7) P(8) + P(7) -P(2) P(7) P(8)

Case 2) P(S31SIS2E 3) = P(7"8) = e(7) P(8)

Case 3) Same as Case i.

Case 4) Same as Case i.

Case 5) Same as Case i.

Hence the overall mission reliability P(S) can be obtained by summing the products of

the conditional probabilities for the respective cases i) through 5). Thus
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P(S) = (0.86639)(.99877)(.9669)

+ (0.04560) (.99877) (.9312)

+ (0.05530)(.96942)(.9669)

+ (0.017681) (.99647) (.9669)

+ (0.001129)(.9118)(.9669)

= 0.949.

The above approach uses the conditional probabilistic approach of Sec. 7.3. The

approach can be rather tedious as it usually would be necessary to list all of the

conditions for each phase and hence the number of different cases would be the

product of the number of conditions in each phase.

Because the above approach can be lengthy and tedious, an approximation to the

mission reliability is possible by use of the method of paths and cuts as described

in Sec. 7.4. In this approach the reliabilities of the components would be taken to

be the reliability up to the end of the last phase in which they are used. If the

probability of failure is assumed to be zero (0) for the phases in which a component

is not used then, the input reliabilities would be equal to the product of the

separate conditional probabilities for each phase.

7.6 N-State Logic Model

The considerations thus far in Sec. 7 have been based on a two-state model for

each item, one failed state and a non-failed or successful state. In this section

we consider a case in which some of the items may be considered as having two or more

failed states, such as opening, shorting, noisy, drift, etc. No additional tools

are needed to solve a problem of this type; however, the analysis does become more

complex. One might need to perform such an analysis in order to make correct

decisions between subsystem configuration. For example, See Ref. 40 which uses a

two-state and a three-state analysis of a particular circuit. As an example consider

a diode-quade with a shorting bar as shown in Fig. 7-18. The circuit fails if two

shorts occur in series (e.g., diodes 1 and 2 or 1 and 4) or if two opens occur in one

end (e.g., diodes 2 and 4 or 1 and 3). Otherwise the system performs successfully.

The probability of a diode opening is denoted by P0 shorting by Ps" Another technique

will be used below to obtain the probability of success or failure. It is certain

that an individual diode will either perform, or short, or open (assuming no other

mode of failure for this analysis). Hence
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P + P0 + Ps = 1 (7-23)

O O

Figure 7-18 Diode-Quad with Shorting Bar

As there are four diodes consider the expansion of Eq. 7-23 to the fourth power.

Thus

1 = (P + P0 + Ps )_ = P_ + 4p3(P0 + Ps ) + 6p2(po + Ps )2 + 4p(PO + Ps )3 + (P0 + Ps )4

= p4 + 4p3p0 + 4p3ps + 6p2p_ + 12p2P0Ps + 6p2p_ + 4p(p_ + 3p_ps + 3P0P_ + p_)

+ p_ + 4p_p s + 6PsPs2 2 + 4PsP _ + PS"_

This expression yields all the various combinations of shorts, opens, and no failures

for the quad configuration given. The coefficients yield the number of ways in

which a certain combination can occur. For example, consider the term

12p2poPs;

these are 12 ways of obtaining 1 open, i short, and 2 operating diodes. That is,

there are 4 ways of selecting the shorted diode, 3 ways of selecting the open diode

from the remaining 3 diodes, and the last two can be selected in only I way. Thus

4 x 3 = 12 ways of obtaining this particular combination. If there is only one short

and only one open, a failure cannot occur according to the above statement of failure.

Hence, this term is put into the success probability in the following formula.

Similarly each term can be treated to determine which portion of the combinations of

opens and shorts contribute to failure or success.

1 = (p4 + 4POP3 + 4p3ps + 4p2p_ + 12p2poPs + 2p2p_ + 8pp_ps + 4ppop_ )

+ (2p2p_ + 4p2p_ + 4pp_ + 4pp_p s + 8pp0p _ + 4pp_ + p_ + P_Ps + 6POPs22 + 4PoP _ + p_)

= P(S) + P(F) respectively,
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where P(S) and P(F) are given in parentheses above. Because PO and Ps are very small

compared to p the above expressions can be approximated by the following.

P(S) = p4 + 4P0P3 + 4p3Ps ' P(F) _ 2p2p_ + 4p2p_ _ 2p_ + 4p_

and the actual probability of success is bounded by

p_ + 4POP3 + 4p3ps < P(S) < i - (2p_ + 4p_).

Example 7-7

Suppose for the diode_quad given in Fig. 7-18 above

p = 0.99

PO = 0.0080

Ps = 0.0020

.9606 + 0.0388 < P(S) < 1 - (0.000128 + 0.000016)

0.9994 < P(S) < 0.99986.

It must be emphasized that independence of the events has been assumed

throughout the above analysis. If the diode-quad were exposed to a critical environ-

ment in its mission life or if failure of one diode increased the probability of

failure of another diode, then the probability of success would be altered by the

appropriate conditional probabilities of failure under the given conditions.

The above discussion just touches on an important topic area such as an N-state

analysis. In actual practice an analysis which takes the possible modes of failure

of each component into consideration and which gives the subsystem behavior for each

failure mode would result in an extremely large number of cases to examine. This can

be true even for a two state analysis. Hence one must cope with the dimensionality

problem by first identifying the more likely weaknesses of the equipment and then to

perform a detailed analysis on these components such as an analysis of a particular

redundant configuration as for the diode-quade. The logical operations and the

probability analysis for the N-state situation are more complex than that for a two-

state analysis but the same basis techniques are applicable.
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8. Models Considering Time

In this section the explicit use of time is considered for multi-item problems.

A straightforward approach is to develop a logic model as in Sec. 7 where item suc-

cess and failure probabilities are expressed probabilistically as attributes, and

then to substitute for each attribute the appropriate time measure as described in

Sec. 4.2. This will be discussed first in Sec. 8.1. For some problems the sub-

stitution approach is not applicable, and a more involved convolution approach is

discussed in Sec. 8.2 for these problems. The approaches presented in Secs. 8.1 and

8.2 can be used for the first time to failure of a system where the individual items

can have many possible time to failure distributions such as gamma or log-normal.

However, most often it is assumed that all the items have exponential failure dis-

tributions. Where this assumption is made, the system reliability prediction models

of Sec. 8.1 and 8.2 are applicable regardless of how much operating time has been

accumulated and if it is known that all items in a system are non-failed. Further,

if the exponential failure distribution is assumed for all items, then the methods of

continuous Markov processes and difference equations can be used to develop reliability

models without first developing a logic model. This approach is acknowledged in

Sec. 8.3, along with other approaches which are somewhat specialized. The final

Sec. 8.4 contains the development of a general redundancy equation which is suitable

for general reliability prediction and which also may be used for reliability alloca-

tion decisions.

8.1 Logic Model Substitution

The logic form of reliability prediction models can be readily extended to

explicitly consider time. This is done by simply substituting the applicable

probabilities of success or failure as functions of time, R(t) or F(t), for each

item, into the multi-item logic model. Such a substitution is possible where the

R(t) or F(t) for each item is applicable for the time t of interest, which means that

reliability prediction models for certain systems such as the classical standby

redundancy and the rope models cannot be developed by this method. The following

sections will treat this and considerations other than logic based model substitutions.

In this section several of the logic based models from Sec. 7 will be extended via

examples to consider time explicitly. Those not treated can be readily developed

and are shown in most reliability books and handbooks. Exponential failure time

distributions for items will be used because of its conventional emphasis. Other

distributions can be readily substituted for first-failure time models, but as they

lead to complications if later failures are explicitly considered they are not so

widely used.
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Series System. If all the items of a system must operate in order for the

system to perform its intended function, then the items are said to be in a series

system. In Sec. 7.2.1 it was stated that the probability that n items AI, A2, ..., A n

operate, assuming independence, is given by

n

P(s) = i_ 1 P(Ai).

If item A i has a mean time between failures (MTBF) of 8 i or a failure rate li(=i/Si )

and if the mission time is TM, then

-%iTM -TM/e i

R(A i) = P(component A i survives time T M) = e = e

provided the li is constant throughout the entire mission. If li changes with the

mission phases one must perform the computations for each phase separately for

non-serial systems. Some simplification can be made in this procedure.

success probability is given by

The mission

n -RITM -TMZk i

P(S) i_ 1 e = e , (8-1)

that is, the failure rates can be added for the n components in series to obtain an

overall system failure rate. If some failure time distribution other than the

exponential is appropriate the R(Ai) can be expressed as the appropriate integral

of the density function. These integrals are tabulated for almost all density

functions of interest in many standard statistics texts.

Parallel Configuration. If n items are in parallel then system success is

equivalent to at least one item operating. Another way of stating system success is

that the items do not all fail. Using this logical form the following result is

obtained

n

P(S) = i - i_ I P(A i)

n -AiTM) . (8-2)
= 1 - i_ I (l-e

For small values of AiTM (all i) the following approximation can be used to simplify

the above calculations.

_XiTM 2 2kiT_

1 - e = 1 - (i - AiT M + 2--]--- "'')

-- _iTM .
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Using this approximation

P(S) =
n

i - _ i_1%i for %iTM very small. (8-3)

8.2 Standby and Rope Models

Development of reliability prediction models for some systems cannot be

accomplished by substitution in logic models. Such systems are those where all

the items are not used throughout the time interval of interest (standby redundancy)

and where the probability of success for some items change at uncertain times in the

time interval(rope redundancy) of interest. For these situations prediction models

can be developed using the convolution concept.

8.2.1 Standby Redundancy

Case l-Perfect Switch.

Suppose that a system consists of m items, m-i on standby, for use when one of the

items fails in use as indicated in Fig. 8-1.

---/- Am-1

Figure 8-1 Standby System With m-i Items on Standby
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It is assumed for the present that the switchover devices are i00 percent reliable

(i.e. that the failure rate is zero in the standby operation), and that each item

has an exponential failure time distribution with failure rate h i. Let TM be the

mission time. Now if the system is to perform its function for the time TM, the total

of the operating times must exceed TM. If tl, t2, ..., tm are the times to failure

of each of the respective components, then the probability of successful operation of

the system P(S) is equivalent to the probability that the cumulated failure times

of the m components exceeds TM, or

= . . > TM)P(S) P(t I + t 2 + . + tm _ .

Consider this problem for the case m = 2, in which it is necessary to obtain the

probability that t ffitI + t2 _ TM. Now

-%itl

p(t I) = h I e , 0 ! tI <

-A2t 2

P(t2) = _2 e , 0 ! t2 < _

and the probability that tI + t2 _ TM is given by the double integral

P(S) ffi i - P(F) ffi i - P(t I + t2 < TM)

t t_t I -lltl -_2t2
= i - Ill2 f e e dt2dt I (8-4)

0 0

where the region of integration is shown in Fig. 8-2.

t2

TM

I+t2<TM

// r//_

TH

_vt I

Figure 8-2 Region of Integration
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Integration of the equation (8-1) yields

P(S)

-_ITM X I
e + [e -_ITM - e-X2TM],

X2-_ 1
If X2 # XI

-XIT M

e [i + AITM ] , If X2 = _i" (8-5)

The above formula can be interpreted as the probability that item 1 survives the

entire mission time plus the probability that item 1 fails in time tI but that

t2 _ TM - tI (the contribution of the second term).

In case the items are all identical and perfect switching exists then the

probability that a system of m components (m-i standby components) survives TM is

given by

P(S)
= P(t I + t2 + ... + tm >_ TM)

-_TM( I A2T_
-- e + XTM +-_T-+ ... +

Am-ITM m-i

(m-i) !
). (8-6)

Note that this formula gives the probability of O, i, 2, ..., m-i failures for a

variable having the Poisson distribution with mean number of failures given by XT M.

Case 2-Imperfect Switch. If imperfect switching were taken into consideration the

second term in the above would have to be multiplied by the probability that the

switch-over occurs, P(sw) say, and hence

-XITM XI -XITM -X2TM]P(S) = e +-- e(sw) [e - e . (8-7)
X2-XI

See Ref. 41 for a statement of the above result when several standby components

are allowed. Also see Sec. 8.4 for a more general formula for combinations of

redundancy.

8.2.2 Rope Model

In some physical situations system failure does not occur until all or k out

of n items fail (for example, as strands in a rope), but the failure of some of the

items increases the stresses on the remaining items and thereby decreases their

reliability.
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Case i: Suppose that the load on a system is constant and that initially n items are

sharing the load. As the elements fail the remaining load is equally shared by the

remaining elements. Thus if the original stress per element is So/n , then the

subsequent stresses increase S0/(n-l) for i failure, S0/(n-2) for two failures, etc.

The increase in stress on each item will usually result in a corresponding increase

in the failure rate for the items as the ratio of the operating stress to the _ated

stress S increases. Let the stress ratio be h as given by
r

S0/(n-f) SO
h = operating stress = =

rated stress S s S
r r

where f is the number of failures and s(=n-f) is the number of survivors. If the

rated stress is exceeded by S0/s then the system is assumed to fail. Let the maxim,,,

number of failures be n - k, or k be the number of minimum number of items for

Thus for non-failed operation the stress ratio must be less than unity,operation.

i.e.

Solk

h = S < i,
r

or

S ffi n-f > k.

Now suppose that the failure rate for an individual item at time t for stress ratio

h is denoted by A(t; h).

In this first case assume that

A(t; h) = Aoh,

that is, _ increases linearly with h, A0 is a constant. The failure rate for the

system AS is given by

A S = sAoh

where s is the number of non-failed or successful items. Now

and thus

S o
h =

s S
r

_oSo SO_ 0

_S = s • s S = S
r r
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which is constant. Ref. 42 treats this case and Ref. 43 has included it as a

special case of finding the reliability of a parallel redundant system when the item

failure rate is X ffiX(h), a general function of the stress ratio.

Thus in this case of constant system failure rate the time to failure of the

system is given by

TS ffi tI + t2 + ... + tf

where f is the number of failures. Now if each t i is assumed to have the exponential

failure time density function, i.e.

p(t i) ffi A S exp(-X S tl),

the distribution of T S is given by the f fold convolution of P(ti),

P(Ts) = P(tl) * P(t2) * ... * p(tf).

For n = 2 items,

P(T s) = P(tl) + p(t 2)

T S

f
tl=0

P(t I) P(Ts-tl)dtl

-XsT S

= X_T S e

Similarly for the f fold convolution one obtains

, f f-i exp{_AsTs}

P(Ts) ffi [P(t)]f = AsTs r(f) ' TS > 0. (8-8)

This is the gamma density function with shape parameter f and the same scale parameter

A as for the exponential distribution. See Ref. 44 for further details in the deri-

vation of the distribution. For f = n-k+l yields

P(Ts) ffi r(n-k+l)

lsn-k+l TS n-k exp{-AsT S}

where T S is the time the n-k+is__t_tfailure occurs.
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Case 2: Suppose that the failure rate of an individual item is of the general form

= A(h)

of the stress ratio h, where A(h) is not necessarily linear as indicated in Fig. 8-3.

The result is given in Ref. 42 in the form of a complex integral with values of the

residues to be determined.

o
o
o

v

,<

h (Ratio of Operating to Rated Stress)

Figure 8-3 Dependency of Failure Rate _ on h

w

8.3 Additional Approaches

Several other approaches which are used for deriving reliability models explicitly

concerning time are briefly identified.

8.3.1 Continuous Markov Process

Another method of deriving conventional reliability models when all items in

the system have an exponential distribution is to use the approach of a first order

Markov process and difference equations. A text [Ref. 3] is devoted mainly to

the derivation of models based on this approach• A space-state diagram relates the

possible transitions between the possible system states. The postulate is applied:

the probability of a state change during (t, t+dt) is Adt plus terms of smaller

order than dt and the probability that more than one change occurs is smaller than

dr. This approach leads to a set of linear homogeneous differential equations, which

can be solved for the probability of success as a continuous function of time. Thus

it is the approach used in Sec. 4.5 for the development of the Polsson process•

Different system configurations (e.g. series, active-parallel, and standby-parallel)

lead to different success probability functions, which are identical to those

obtained from the approach in the preceding Secs. 8.1 and 8.2.
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The Markov process approach can be readily extended to include maintenance,

which is really the advantage of this type of model formulation. Here the state-

space transition diagram is expanded from only failure transitions to include both

failure and repair transitions. The same postulate can be applied to repair as was

applied to failure, resulting in an expanded set of differential equations. These

can be solved for availability formulas. This Markov process formulation is thus

best suited for system level modeling where both maintainability and reliability

are to be explicitly considered, but where the operational profile and the system

are not so complex that an analytical approach becomes unwieldy.

8.3.2 Extreme Value Theory

An approach for obtaining certain prediction equations can be based on concepts

of order statistics when the lifetime distribution of all items are identical and

independent. Here the probability density function is derived for the particular

item which, when it fails, will fail the system. For each of the following systems

this item is:

(i)

(2)

(3)

Series: Shortest lifetime pdf from n series items.

Parallel: Largest lifetime pdf from £ parallel items.

Series Strings in Parallel: Largest lifetime pdf from £

items from the shortest lifetime from n items.

(4) Parallel in Series String: Smallest lifetime pdf from

n items from the largest lifetime from £ items.

As in most practical problems all items do not have identical pdf's, the general

applicability of this approach is restricted.

Example 8-1

If a system consists of n items in series, e.g., linked together

in the form of a chain, the lifetime of the chain cannot be more than

that of the weakest llnk. The life length distribution of the chain

would be that of the shortest llfe length. Ref. 43 treats this

problem. The probability that the shortest llfe is less than t is

given by

Fl(t) = 1 - Prob{llves of all n items are greater than or
equal to t}

= 1 - [i - F(t)] n = 1 - Rn(t)

Pl(t) = n[l - F(t)] n-I p(t).

where R(t) = 1 - F(t) is the reliability of a single item

p(t) = lifetime density function of a single item.
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Suppose that the distribution function for the lifetime of each member of the

chain is Weibull, i.e.

then

and the

B
F(t) = i - exp{- ( t-y ) } for x > Y,

8

Fl(t) = I - exp{- n( t-y ) }
n

81 B

Pl(t ) -- n_B8( t-y ) exp{_n(t_ ) }.n n

8.3.2 Flowgraphs

Flowgraphs are a graphical method of representing simultaneously a set of

equations which have been applied to electronic and other engineering problems.

They augment a classical mathematical approach. There has been some exploratory

application of flowgraph techniques to the development of reliability prediction

models [Refs. 45 and 46] but this approach is not widely used. An advantage of

a flowgraph approach would be that if one is already skilled in their use for

engineering problems then this may be a ready method for learning about the development

of reliability equations.

8.4 General Redundancy Model

Three of the redundancy models which have been introduced are those for:

(i) all items functioning, i.e. Eq. 8-2 which will be referred

to as items in parallel,

(2) standby redundancy where there is a "perfect" switch, i.e.

Eq. 8-6, which will be referred to as spares, and

(3) standby redundancy where there is a switch, i.e. Eq. 8-7,

which will continue to be referred to as standby redundancy.

Interest is with a general reliability model for parallel arrangements of identical

items of any of these three redundancy approaches where the failure criterion can be

one or more items must work. In addition to reliability prediction this model

can also be used for the general allocation problem concerning optimum selection of

a redundant configuration. This model is an input for a general reliability cost

tradeoff program (RECTA) which is covered in Volume II - Computation.
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In this section the following notation is used:

n identical items in parallel,

m identical spares,

r identical items in standby redundancy,

n o number of items that must work,

p switch reliability,

s the number of switches which work,

t the mission time, and

A the failure rate.

The general formulas for the cases in which (a) n o = 1 and (b) no > 1 are

derived separately. Although the first case is a special case of the latter, case

(b), it is useful to derive the simpler case first for a better understanding of the

more general formula.

8.4.1 Reliability of a System for no = 1

In this section the general formula is derived for the situation that only

one item must work.

The probability that s switches work is given by the binomial formula

_) pS(I-P )r-s"

If s switches work then the m spares plus the s items in standby result in m+s items

on "standby", (manual or automatic). Thus the reliability is given by the

formula

[(:) ]R e = s_ 0 pS(l-p)r-s R£(n, m+s; t) ,

where R£(n, m+s; t) is the reliability for a mission of length t given s switches

work, n active items and m spares are available, and hence m+s standby items. The

reliability R£ is given by three cases:

Case i: m+s = 0. In this case the reliability is given simply by the probability

that at least one of the n active items survives time t, that is,

- i e-At n
RA 1 - [ - ] .
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Case 2: m+s = i. In this case the reliability is the probability that the n

active items plus the one (i) standby item survive time t, or

n(;)R_ -- i- j_0

where

(_i) j e-j%t A(j),

1 rt -%t2(l-j)

A(J) = (m+s-l)! j e
0

t e-At2(l-j)

0

and for specific values of J we obtain,

A(O) = l-e -At ,

A(1) = At, and

(At2)m+s-I d(At2) , general formula,

d(At 2) for m+s = 1

(j) (J-l)At-l)/(j-l), j = 2, .. n.A -- (e .,

Case 3: m+s = 2, 3, ..., m or m+s is a positive integer larger than i.

If m+s is larger than one (m+s>l) the formula for R£ is the same as the above with

the exception that the A(J) are given by the following formulas which include Case 2

as a special case.

A(0) = i
-At

-e

(m+s-l) !
[ (At) m+s-I + (re+s-l) (%t) m+s-2

+ ... + (m+s-l)!],

A(1) = (%t)m+S/(m+s)!, and

A(J)
e(J-l)%t

(m+s-l) l(j-l) m+s

{ [(j-l)At] m+s-I - (m+s-l) [(j-l)At] m+s-2

+ ... + (-i) m+s-I (m+s-l)!} +
(_i) m+s

(j_l)m+s , j = 2, 3 .... , n.
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Derivation. The derivation of the expression for R£ is given in the following

discussion. First consider the probability that a system of n items in parallel

(all active) will survive time t. Let t(n ) be the longest time of survival for

the n items and hence what is required is the probability that t(n ) > t. The

probability that all n items fail in the interval (0, t) is given by

Fl(t) = P{t(n ) ! t} = Fn(t) (8-9)

and the probability that at least one item survives time t is given by i - Fl(t)

or

P{t(n ) > t} = i - [l-e-%t] n. (8-10)

The probability density function for t(n ) is given by differentiating Fl(t) to yield

Pl(tl) = n[l_e-_tl] n-I e

where tI is substituted for t(n ) for convenience.

It is now desired to find the time to failure distribution for the m+s

"spares" in order to find the total survival time for active and spare items. It

is assumed that the n parallel active items have all failed at time t I and then the

m+s spares will be used one-at-a-time until all have failed. Thus we want the

probability density of the time to failure of these m+s spares with the ass_nption

that one of them is used immediately, at time zero for the spares. The survival

time is the sum of m+s-i times each of which has an exponential failure time density

function. Hence the frequency function for the sum (t2) is the Gamma distribution

-%t 2

P2(t2) = %e (%t2)m+s-i/(m+s-l)f

where t 2 is used to denote the survival time of m+s "spares", automatic and/or manual.

The reliability R_ is given by the probability that the sum of the two survival times

as described above, tI + t 2, is larger than or equal to t, i.e.,

P(t I + t2 _ t).

The probability that the sum is less than t is given by the convolution integral

t

f P2(t2 ) Fl(t-t2)dt 2,

t2=O

where Fl(t-t 2) is obtained by substitution in Eq. 8-9 above.
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t -At 2 (At2)m+s-I -A(t-t2)]n
i [Ae (m+s-l) l ][l-e dt 2
0

= I[ e ][j_o (-1)
0

j -iX(t-t2)
e ] d(Xt 2)

(re+s-l) I

t -At 2 Jlt 2
fe e
0

(Xt2)m+s-I d(lt2).

Hence, for m+s >__I,

l-R_(n,m+s,t) = P(t I + t2 5_ t) = j_E0 (-i) j A(J),
(8-11)

where

A(J)

t -At2(1-J)
i le

= (m+s-l) I 0
(At2)m+s-I d(At2).

If m+s = O. There is no need for A(J), j = O, I, ..., n, and we use Eq. 8-10

for n items in active parallel.

If m+s = i. For J # i but an integer greater than or equal to zero

t e-%t2(l-J)
A(J) = f d(Xt 2)

0

1 [1 - e-At(i-J)],
(i-J)

and for J = i

t

A(1) = fd(Xt 2) = At.
0

If m+s > i.

A(O) =
t -At 2

1 fe
(m+s-l) l 0

(It2)m+s-I d(lt2)

= l_e -At [(At) m+s-I + (m+s-l)(At) re+s-2 + ... + (m+s-l) l]/(m+s-l)!
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1 [t (A t2)m+s_l = (_ t)m+sA(1) (re+s-l) z - d(Xt2) (re+s)'
0

A(2)
t kt 2

1 fe
= (m+s-l)! 0

1
A(2) =

(m+s-l) l

(_t2)m+s-I d(_t2)

)_t

e [(At) m+s-I - (m+s-Z) (lt) m+s-2

+ ... + (-I) m+s-I (m+s-l)!] + (-i) m+s

or in general for j _ 2

A(J)
e(J-l)%t

(m+s-l) l(J-l) m+s

[[(j-l)At ]m+s-i _ (m+s-l) [(j-l)%t] re+s-2

] (-i) m+s
+ ... + (-I) m+s-I (re+s-l)IJ +

(J -i) m+s

Having obtained all Aj, for j = 0, i, ..., n the results are substituted into Eq. 8-11

to obtain

P(t I + t2 ! t),

and then the desired probability is the reliability R£, that is

R£(n,m+s,t) = i - P(t I + t 2 ! t).

This result must be obtained for each possible s and used in the formula for the

reliability of an item,

r[(r) ]Re = s_E0 pS(l-p)r-s R£(n,m+s,t) . (8-12)
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8.4.2 Reliability of a System for n O _ i

Suppose that nO items must operate in order for a system to properly perform

its function. In the previous derivation nO = i and the distribution of life with

n items in active parallel was given by the maximum life for the n items. In this

case the time to failure is given as the time to failure of the n - n o + it h item.

The probability that the n - n o + it__hitem fails in the interval (t, t+dt) is given

by

n! n-no no-i

P3 (t)dt = (n0-1)l(n-n 0)!'[F(t)] [l-F(t)] p(t)dt,

where the probability density function and distribution function for a single item

are

-%t
p(t) = _e ,

-_t
F(t) = 1 - e

Thus

-At(no-l+l) _%t]n-no
P3(t) = C(n, n0)%e [i - e

nn0(n no)= C(n, no)%e k=EO (-i) k e , (8-13)

where

C(n,no) = nl/[(no-l) 1 (n-no) l].

The distribution function of the time to the n-n 0 + it_hhfailure can be obtained by

integration of P3(t),

! n-n0 (nkn 0 k -lt(k+n0)F3(t ) = C(n, n o) kE_0 (-i) e %dt,

/n-n_ -_ t3 (k+n 0)

n-n0 _ k -J (_l)k+l i [e - I]= C(n, no ) k__E0 (k+n0) ,

where t3 is used to denote the life-length of the n active items. Hence

n-n0 (nkn0) (_i) k+l i -A t3 (k+n0)
F3(t3) = C(n_n0 ) kE=O (k+no) e + B(n, no )
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where

n-n0[(nkno) ]B(n, n O) = C(n, nO) kZ__O (-i) k (k+_0)
(8-14)

It is now possible to derive the distribution of t2 + t3 where t2 is the time

to failure of the m+s "spares" and t3 is the time of failure of the n active items

in parallel of which n o must survive. Hence, by convolution of these two distribu-

tions the distribution of t = t2 + t 3 is given by the integral

t.

f P2(t2 ) F3(t - t2)dt 2

t2=O

or

t[ [ no0Cn0)
P{t 2 + t 3 <__t} = of Ae-At2 (m_s -- 3! • C(n, n o ) k__E0

-A(t-t2)(k+no)i • e + B(n, n o dt 2.
(-i) k+l (k+no)

or

n-n 0 (n_n)I -lt (k+no) 1
p{t 2 + t3 < t} = C(n,n o) 7. (-i) k i 0 A(O) - e A(k+n 0)-- k=0 k+no

where A(O) and A(k+n o) are obtained by using the previously derived equations for

A(J) for J = 0 and for J = k+n O.
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9. Environment and Bound-Crossing Problems

In this section various approaches which have been covered thus far in Parts

II and III are brought together. Mainly the material is concerned with a multl-ltem

system which is to operate in an environment which is known probabillstlcally or

which is comprised of functionally related items. In particular, practical conclu-

sions which can result from the reliability prediction analyses are noted at the ends

of Secs. 9.2 and 9.3. This is the final section of this report concerned with

analytical detail which has immediate practical significance. The following sections

of Part IV mainly present the results of investigations on approaches for bringing

into the analysis more detailed Infomuatlon bearing on the dependence question.

9.1 Environment Described Probabilistically

System reliability logic models such as those developed in Sec. 7 when all

items are independent can be expressed in functional notation as

R = R(R), R = (RI, ..., Rj, ..., Rn)

where R is the reliability for a system and each Rj, j = i, ..., n is the reliability

of a single item. If each Rj is conditional on environment Rjl _ and if the probabil-

ity density of the environments p(_) is known, then the unconditional system reliability

is the expected value,

E(R) = f R(R) p(s)ds. (9-I)

S

This is the extension to multiple item models of the approach noted by Eq. 4-15 for

single items.

Eq. 9-I would be applied to the situation in which each item is used at the

same environment and the envlror_nent is described by a probability density p(s_).

Note that this means that the average reliability of each item cannot be obtained

separately (using Eq. 4-15) and this average reliability substituted into the system

reliability equation R = R(R). That is

f(RII_)(R21 _) p(s)ds # f(Rll _) p(s)d_ f(R21 a) p(s)ds
S S S

for the simple case of two serial items. Whether or not using the incorrect separate

approach yields conservative or optimistic results depends on the details of the

particular problem. Some generalized statements of this sort have been developed
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for certain multi-item stress-strength problems and they will be noted in the follow-

ing section.

The system reliability model R = R(R) may result from any of the configurations

and approaches noted in Sec. 7. The item reliability conditional on environment

could result from testing. An item reliability measure could be of the form of the

various measures of Sec. 4, or it could be based on the bound-crossing concepts

of Sec. 5. For bound-crosslng concepts where the bound is fixed, such as in Sec. 5.2,

the performance attribute y and the environment _ need to be dependent, i.e.,

p(y,s) _ p(y) p(_), in order for the item reliability to be conditional on environ-

ment. Application of the fixed bound would give

Y_

f p(Yl_)dY = RIs •

Y£

This resulting bound-crosslng based reliability measure can then be readily inserted

into Eq. 9-1 as an Ril _ along with other reliability measures for a multi-item system.

An expanded reliability definition which is essentially an elaboration on

Eq. 9-1 has been proposed in Ref. 47 where the orientation was for catastrophic and

drift failure modes for an item in a probabilistlc environment. Eq. 9-1 is thus the

basis of an approach where there is a probabillstic environment if the orientation

is for separate physical items where there is a reliability measure for each item

such as has been the viewpoint throughout Part III, or where the orientation is

for separate failure modes where multiple modes are specifically identified as

in Secs. 4.1 and 4.3, in Ref. 47, and developed in Part IV.

For stress-strength problems where the bound is a distribution such as in

Sec. 5.3 the item reliability is always conditional on the environment (stress).

Extreme value approaches cited in Sec. 8.3.2 for obtaining system reliability

models which explicitly considered time are also applicable for certain multi-item

stress strength problems.

The following section will expand on the multi-item stress-strength problem

using detailed illustrations.

9.2 Stress-Strength Problems

Multi-item stress-strength problems considered here will demonstrate an

application of the more general remarks made in Sec. 9.1. The general problem area

is the extension of the single item stress-strength reliability measure of Sec. 5.3

to a multi-item system. The potential mistake in reliability prediction here is to
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obtain separately the reliability of each item in a system such as using Eq. 4-15,

and then to substitute this into system logic models as those from Sec. 7. The

correct development of multi-item stress-strength problems is presented in Section

9.2.1 and this is followed with some important practical conclusions in Section

9.2.2.

9.2.1 Prediction Approaches

Two basic approaches are used: (i) the calculation of the conditional proba-

bility that the strength exceeds a given stress and then integrating this result

over the assumed stress distribution, and (2) the derivation of the probability

density function (pdf) for the smallest (or largest) value of strength in a sample

of n items, and then using the joint distribution of this density with that of stress

to obtain the desired probability. Mathematically the first computation can be ex-

pressed as follows:

(I) Obtain the probability that y > so for a single item, i.e.

oo

P(y > so ) = f p(y)dy ,

s o

where so is the fixed stress level, and p(y) is the pdf of strength.

The examples will use uniform distributions and systems with few items,

but the approaches are of course applicable to different distributions

and systems with many items as well as with complex configurations.

(2) Obtain a general expression for the system reliability R in terms

of the item reliabilities, knowing the system configuration. For each

item, substitute the result of (i) into the system reliability model

to obtain a system model as a function of the stress R(s).

(3) Integrate the above reliability model over the stress pdf, p(s),

i.e.

oo

f R(s) p(s)ds ,

s=0

where R(s) is the system reliability as given by (2) above.

The second computation follows the procedure described below:

(i) Obtain the distribution of the smallest strength in the case of a

series logic (or largest strength in the case of parallel logic in which

only one item must operate). For example, the probability that the

smallest item in n selected at random from a distribution function F(y) has

a strength less than y is given by
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P(Ys ! Y) = i - [i - F(y)] n

that is, i minus the probability that they (the n strengths) are all

larger than y.

(2) The result in (i) is the distribution function for the smallest

observation and it must be differentiated to obtain the pdf for the

smallest strength Ys' PI(Ys )"

(3) The joint pdf of strength Ys and stress s is given by

pl(Ys ) p(s)

and it must be integrated over the region Ys _ s to obtain the

probability that the strength is adequate to withstand the

imposed stress, i.e.

//pl(Ys ) p(s)dy s ds.

YsLs

The examples given below will illustrate these two approaches.

Example 9-1

First consider a single element with strength between 80 and

i00 psi and stress between 60 and 85 psi. If the density functions

are uniform on the respective intervals and the stress and strengths

are independent the following two-dimensional plot indicates the

region of inadequate strength.

i00

Strength

80 --- --J -- J

60 Stress

Item satisfactory (y>s)

! !

85

Region of inade-
f quate strength (y<s)

r S

Figure 9.1 Region of Inadequate Strength
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Since the two-dimensional distribution is uniform the probability that

y exceeds s is given by 0.975, i.e.,

_5 1-- f ds _-_ dy
y>s

85 85 85

1 f fdsdy -- 1 11 - 50--O - 50---O f [85 - y]dy
80 y 80

1 y2 a5
500 [85y - 2 ] = i - 0.025 = 0.975 .

80

Thus the item reliability is 0.975.

Example 9-2

Now consider a serial system with n items and suppose that

each item has the same strength distribution, the items are selected

at random, and that they are all exposed to the same stress given by

the stress density function above. Thus the probability that this

system will be adequate is equivalent to the probability that all

items are adequate; that is, each of the strengths will exceed the

stress value.

Approach l: Now suppose that the stress is considered to be known or fixed

at so , then the probability that an item selected at random has strength exceeding

so is given by

I if s o < 80

P(Y • SO) = 1 i00 - so

20 if 80 ! so ! 85.

Hence the probability that all n items have strength exceeding so is given by

i if s o < 80pn(y • SO ) = (i00 - So )n

20 if 80 _ so ! 85.

The expected value of pn(y • So ) for the uniform stress distribution is the

unconditional probability of no failure

( 00)nE[pn(y • s0)] = f _ s. ds + f i • _ ds
80 60

(i0020) n+l (_ ) 8]5
_ i s i 4

n+l 20 _ 25 +- °
80 5

For n-- 2 this probability is 0.95416.
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Approach 2: Consider the second approach as described above for the same

problem. The probability that the strength of a serial system is adequate is

equivalent to stating that the minimum strength of n strengths selected at random

from the strength distribution will exceed the stress value. The probability that

the smallest value of Yi' i = i, ..., n (say y(1)) is less than y is given by

where

P(Ys <- y) = 1 - (probability all values are greater than y)

= i - (i - F(y)) n

F(y) is the distribution function for y as shown below.

F(y)

F(y) = 1

! 80 i00 y(psi)

Figure 9-2 Strength Distribution Function

Hence

F(y)

0 y < 80 psi

1

(y - 80), 80 _ y _ i00 psi

i, y > i00 psi.

Now the probability density function for the smallest observation is

p(ys ) = nil - F(y)] n-I p(y).
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Thus the Joint density function for y and s is

p(ys ) p(s)dy s ds

n-I

= n[l - F(Y)] P(Y) " p(s) dy s ds I

Using the fact that y and s are uniform probability density functions

1 i

P(Y) = 2-O' p(s) = 2-5 "

Hence the probability that Ys ! s (that is, a failure occurs) is given by

i ]n-i i i
f fn[1 - _ (Ys - 80) 2-O " 2-5 ds dYs

Y!S

85
1 _ in-i 1

f n[l - _ (Ys 80). 2-_ "
80

i

2-_ [85 - Ys]dYs

For n = 2 this reduces to 0.04582 and thus the probability that Yl > s is 0.95416.

Example 9-3

Suppose there are three items in parallel and that at least

one must work (strength exceed stress). Let the strength distribu-

tions he idenuical and uniforms, as given above and let the stress

distribution be the same as above.

Approach i: Using the first approach we obtain the probability that the

strength of a single item exceeds a specified stress so and then integrate this

result over the stress distribution to obtain the unconditional probability. The

probability that for a single element, strength exceeds stress sO is given by

P(y > s0)

1 if so < 80

100 - s0

20 if 80 _ s o _ 85.

The probability that at least one of three exceeds the value so is

1 - P[all three have strength less than sO ]

= 1 - [I - e(y • So)]3,
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and hence the unconditional probability that the system is adequate is

= . i- [l-P(y> _o] d.
60

( 00f 1 ds+f l- [i- ] ds
60 80

85

4 f5 +
80

Approach 2: Using this approach the density function must first be obtained

for the largest strength. The probability that the largest of three strengths exceeds

y is given by

1 - P(all three strengths are less than y)

and the probability that the largest is less than or equal to y is

where

F(y)

F3(y)

I 20__10 , y< 80
: (y - 80), 80 ! Y ! i00 .

1 , y > 100

Thus by differentiating F3(y) the pdf of the largest strength is obtained, i.e.

Pl (y)

1 , y < 80

I+0= ( (y- Bo)), BO!y!lOO ,

0 , y > i00

and thus the probability that y exceeds s is given by

)1 - f _ [ _-_ (y_ 80)]2 ds dy = 0.999218.

80 y

9.2.2 Practical Results

The results of the examples in Sec. 9.2.1 will be used to illustrate the

error introduced by incorrectly treating probabilistic dependence. Recall that the

single item reliability from Ex. 9-1 was 0.975. In Ex. 9-2 for two series items, the

correct approach resulted in R = 0.95416. If the (incorrect) approach was used
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of treating these as two independent items in series was used then R = 0.9752 = 0.950525.

Thus the incorrect approach resulted in an unwarranted pessimistic reliability for a

series system. Further, in Ex. 9-3 for three parallel items the correct approach

resulted in R = 0.999218. If the incorrect approach of treating these as three

independent items had been used, then R = i - 0.0253 = 0.99925. Thus for a parallel

system the incorrect approach resulted in an unwarranted optimistic reliability.

Although the magnitude of these errors for these examples is not very large, it

should be recognized that only few items were considered. The errors in the above

examples illustrate the results of more extensive analyses in Refs. 48 and 49. These

references show these results with greater elaboration for certain situations where

each item is identical and at the same stress:

(i) Serial System. Obtaining the reliability of each item separately

and then substituting these into a series system model of multiplying

item reliabilities will yleld pessimistic system reliability predictions.

(2) Parallel System. Obtaining the reliability of each item separately

and then substituting this into a logic reliability model will yield

optimistic system reliability predictions.

These results have been shown for situations where the stress-strength distributions

are normal [Ref. 48] and where they are rectangular [Ref. 49]. Some practical

guidelines gleaned from these results and expanded on in these Refs. are:

Serial Systems

(i) Mount items so they experience the same environment, i.e., a compact

unit.

(2) Use consectively manufactured items in the same system, i.e., same

manufacturer and lot.

(3) Select items with similar failure modes.

Parallel Systems

(i) Mount items so they experience different environments, i.e., different

planes and location.

(2) Use items in the same system from different manufacturers and lots.

(3) Select items with different failure modes.

9.3 Functionally Related Variables

A class of multi-ltem bound-crosslng reliability prediction problems are

those where there is no meaningful reliability measure for each item in the system.

In the multl-ltem stress-strength problem of Sec. 9.2 (where in the more general

terminology the item strengths were item performance characteristics and the stress

was the interface characteristic) it was appropriate to have a reliability measure

for each item and a multi-item or system reliability measure. The problem being
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considered here is a more general one where there is not a performance attribute

for each item, but the performance attributes are only for the system. That is, the

functional relationships between the system performance attributes and the item

and interface characteristics are such that any possible variation in any characteris-

tic can always be compensated for by some possible variation in a different

characteristic. The problem here is to obtain the distribution of the performance

attributes from the distributions of the item and interface characteristics. Then

the bounds are applied to the system performance attributes for the system relia-

- bility prediction. We will not be concerned here in Sec. 9.3 with mixtures of

this more general problem with those of Secs. 9.1 and 9.2. The reader interested

in such complexities is referred to Part IV. Some practical problems which have

been widely treated in reliability analysis are those for performance variation

analysis of electronic circuits and of systems in general [Ref. 7].

The basic procedure for reliability prediction of functionally related

variables is as follows:

(i) Select the performance attributes of interest. These most often

are functional outputs.

(2) Develop the deterministic mathematical models at nominal conditions

relating the performance attributes to item and interface characteristics.

(3) Estimate the variability of the item and interface characteristics.

For electronic parts these typically reflect the initial (manufacturing)

variations, aging effects, and the influence of environmental inputs.

(4) Compute the following:

a. The expected variability of and possibly the correlation

between the performance attributes.

b. Identify sources of performance attributes variability.

Possible sources include contributions from the linear, non-

linear, and interaction behavior of the deterministic models,

and from variations and correlation between the independent

variables.

c. Predict the probability of successful performance by

assigning limits to the expected performance attribute

variations.

The more practical benefits are using the results of (4) for identifying designs

which are susceptible to failure, and for providing redesign guidance. They are

also useful for comparing alternate design approaches, and for aiding the assignment

of specification limits. Normally the prediction of the probability of acceptable

performance that can be obtained from a performance variations analysis is not highly
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precise because the approach is an approximate one, but more so because of the lack

of precision in the data on part and interface characteristic behavior.

A solution to the problem in closed form is almost never possible, but

mainly provides a better understanding of what an approximate approach is attempt-

ing. (See the discussion in Section ii concerning Mode 2 for identification of

an approach in closed form.) What is usually done in practice is use an approximate

approach such as the method of moments (sometimes called the propagation of errors).

Other approaches are identified in Ref. 7. The method of moments approach is

presented below as an illustration.

9.3.1 Method of Moments

In the moments approach the functional relationship is expanded in a Taylor

series. Higher order terms may be used, although most applications only use the

linear terms. Measures of location and variability of the item and interface

characteristics, which are the independent variables, are described by means and

central moments. The degree of association which might exist between two independent

variables is described by the correlation coefficient. The mean and central moments

of the dependent variables are obtained from the application of expected value

theory, which gives the mean and central moments of the dependent variable as

functions of terms obtained from the Taylor series expansion and the mean and central

moments of the independent variables. The distribution of the performance variables

is then obtained by either assuming a distribution, or by fitting a distribution by

the method of equating moments, for example. Correlation between the various

performance attributes can also be obtained by this approach, but this is not

usually noted or developed in reliability applicatons of this technique.

For simpler problems, requiring the use of only first order terms, it is

possible to use this technique without a computer. Conversion of the functional

model to a Taylor series yields sensitivity and possible interaction terms which

readily provide information on variability sources. When the problem becomes more

complex, as an involved functional relationship and high order moments, a computer

is required. Advantages of this approach are simplicity for easier problems, and

resultant information on sources of variability.

Mathematically the method of moments for a single performance attribute is

as follows:

If the relationship

y = Y(Xl, x 2 ..... xn)

can be approximated by a linear function
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Y cO + ClX I + +__ ... CnX n

it is possible to approximate the distribution of y for certain distributions of

the variables x., i = i, ..., n. For example, if x. is normally distributed with
1 1

mean _i and standard deviation oi and if the correlation between xol and xj is rij ,

then the distribution of y is approximately normally distributed with mean

_{y} = co + Cl_ 1 + ... +CnB n,

and standard deviation

where

o{y} _ 2 2 e2_2[ClCl + "'" + n n + 2ClC2Ci°2r12 + "'"

+ 2Cn_ I CnOn_i°nrn_l,n ]I/2

Example 9-4

Model

The linear amplifier, for which the circuit is shown in

Fig. 9-3 is used here to illustrate a reliability prediction

analysis using the method of moments.

For audio frequency applications, the transistor is adequately

described by the hybrid or h-parameters. See Ref. 50 for further

details on the circuit description and the derivation of the mathe-

matical model. From circuit analysis the model for current gain

is as follows:

A°
1

R3 hfe U1

R3 + R4 1 + hoeU 2

U 1 +

(Ahe)U2 + hie

I + hoeU 2

RI R2 R3 R4

UI = R3 + R4 ' U2 = R3 + R4 '

h
e

A
= hie h - hoe re hfe

Part Characteristics

The means and standard deviations of the part characteristics
are contained in Table 9-1.
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Table 9-1

Linear Amplifier Circuit Component

Part Parameters-Means and Standard Deviations

Parameter

RI

R2

R3

R4

hfe

h
re

h
oe

hie

Me an

47.05K ohm

7.03K ohm

380.9 ohm

468,7 ohm

102

576 x 10 -6

556 x 10 -6 mhos

254

Standard Deviation

0.97K ohm

0.17K ohm

8.54 ohm

ii. 14 ohm

ii. 1

0.46 x 10 -6

68.6 x 10 -6 mhos

24.9

lOuf

I,(
C 1

6.8 K ohms

V
CC

Z

-12 volts

R 3

390 ohms

2N526

L
i

C 2

I(
10_f

m

R 4

470 ohms

Figure 9-3 Linear Amplifier Circuit
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The following matrix contains the correlation coefficients r i. between
pairs of the equivalent circuit transistor parameters. The r_sistances

are sampled at random from separate distributions and are uncorrelated

with each other and with the h-parameters.

hfe

h
oe

hie

hfe

1

h h
oe hie re

0.595 0.912 0.165

i 0.608 0.400

(by symmetry) i i

Analysis

As suggested in the proposed approach one first performs a

sensitivity analysis and checks the function A i = A.( ) forl
non-linearlty and for interaction. Because the function is essentially

linear, the first and second moments of the performance can be obtained

from the linear approximation to the performance, i.e.

A i = co + cI hfe + c2 hie + ... + c8 R4

= 39.38 + 0.387 hfe + 118.3 hre - 0.742 × 104 hoe

- 0.00619&hie + 0.416 × 10 -5 &RI + 0.186 × i0 -S AR2

+ 0.0512AR3 - 0.0502AR4.

Outup_!

The estimated mean and standard deviation of A i are given by

_{A i} = 39.38 and

o{A i} = [(0.387) 2 s2{hfe} + ... + (-0.0502) 2 s2{R4} +

+ 2(0.387)(118.3) s {hfe} s {hre} r{hfe, hre} + ...

+ 2(-0.742 x i0_)(-0.00619) s {h } s {hie} r {hoe, hie}] I/2
oe

= 3.91.
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Remark i. A reliability prediction is obtained by assigning a desired limit and then

by obtaining a numerical value from any normal distribution table.

Remark 2. If the function could not be approximated by a linear function higher order

moments and/or distributions of the part characteristics would be required.

Remark 3. The standard deviations and means used in the above analysis were

inherent variations in the part characteristics. Variation as a result of operation

environment, inputs, stresses, loads, and/or aging were not included. The analysis

would be the same except that the total standard deviations would be larger than the

above. In addition, correlations between the behavior of the parts characteristics

may be introduced as a result of changes in a third variable, such as temperature,

affecting two or more part characteristics.
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Part IV. Refinements of Prediction Models

Some material concerning the structuring of reliability prediction models is

presented in this part. The intent here is to provide insight somewhat beyond the

current conventional practices. On occasion a hue and cry is raised as to whether

or not current conventional practices are appropriate. Anyone who has performed

reliability predictions and who has given serious consideration to the appropriate-

ness of these predictions has likewise on occasion felt a bit uncomfortable. Yet, to

many persons it is not obvious how to go beyond conventional practices.

The material presented in Part IV is directed toward those who are concerned

with the development of reliability prediction models. A frame of reference is

presented which will fit together details of certain reliability prediction problems.

There are strong limitations on the extent to which these notions can be applied to

real problems, with the main limitation being data.

To develop an approach to structuring certain features of reliability predic-

tion models which reflects more detail is a stumbling point. The difficulties may

eventually turn out to be elementary in hindsight, but documentation providing

guidance on the type of problem considered in the following sections is rare.

Remarks will be made freely in the hope that some may be of help in overcoming these

difficulties. The following questions introduce some possible stumbling points and

questions of interest.

(i) What is to be done if the conventional assumption of probabilistic

independence is not made? What are sources of dependence and how are

they reflected in structuring the problem?

(2) What are the features of a failure mode? How are variables treated

which are probabilistic but which do not have values that always

cause a failure?

(3) What is the pertinence of the typical engineering deterministic

equations used for obtaining performance and stress.

(4) What is the relationship between degradation or catastrophic

failure at the source (point of repair) and the manner in which system

performance will be affected?

(5) How are the above considerations brought together?

(6) What are the implications of replies to these questions on real-

world reliability predictions and on other reliability analyses?
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Two examples are considered in some detail in Secs. i0 and Ii to intrdduce the

notation and to formulate or structure the reliability prediction problem. Sec. 10

is a discussion of an example which is intended to illustrate features concerning

catastrophic and degradation failures. A number of related problems are simultaneously

treated in a different example presented in Sec. ii. The purpose is to structure

the problems and not to obtain numerical solutions. Next in Sec. 12 the points made

in Secs. I0 and ii are expressed in general notation which results in detailed

reliability prediction models. The above questions are replied to individually in

Sec. 13 based on the contents of Secs. i0, ii, and 12, serving as concluding remarks

for Part IV.

This material is somewhat related to earlier efforts at RTI supported by

NASA ORQA [Ref. 47].
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i0. Catastrophic and Degradation Failures

There are two broad classes of failure modes which are popularly cited; these

are a catastrophic failure and a degradation (or drift) failure. A degradation

failure is an unsatisfactory level of a performance attribute, and a catastrophic

failure is an abrupt change in a performance attribute, usually culminating in no

meaningful measure of the performance attribute.

The question here is, "Is there a unique relationship between the classification

of system failure into catastrophic or degradation and a similar classification of

the source (point of repair) of system failure?" The answer will be developed by

considering some failures associated with an electronic transmitter.

Catastrophic failure at the source:

(i) A part within a system opens or shorts. The result could be an irmnediate

catastrophic failure of an output performance attribute, thus a catastrophic failure;

or, the result could be a degradation failure of an output performance attribute.

For example, the heater winding of a temperature control oven opens and the carrier

frequency of a transmitter drifts. The oven winding open is an illustration where

the system would not immediately fail, but rather results in an increased probability

or later system failure.

(2) An input such as a supply voltage is completely lost. This results in

the complete loss of all performance attributes.

Degradation failure (or conditions) at the source:

(i) An output performance attribute crosses a bound and is considered to

have failed. Here there is some value of the performance attribute present, but it

is outside of the desired range. This type of failure may have no single cause, as

there may be several different parts which could be changed in order to correct the

failure. There may be several items considered as failures according to the bounds

on the performance characteristic in each part's specification, or there may be no

part considered as having failed according to these criteria. Here there would be a

functional relationship between the output performance attribute and the characteristics

of the parts.

(2) An internal performance attribute crosses a bound, which causes an output

performance attribute to fail catastrophically. An example is an oscillator ceasing

tO oscillate because of part characteristic value changes, with the result that an

output performance attribute fails catastrophically. This type of failure is similar

to the above as it may have no single cause.

The above examples illustrate that there is no unique correspondence between

catastrophic and degradation failure modes at the detailed level (source) to that

at the system output performance attribute level. That is, a catastrophic failure
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at the point of repair may show up at the system performance level as either a

catastrophic or degradation failure, and similarly for vice-versa. Further, a degra-

dation failure may not have any unique point of repair. The examples cited above

for degradation failures within a system were for cases where there was not a unique

repair point. It is possible there could be, such as where an output performance

attribute is only a transformation of a single part characteristic. A more specific

illustration drawing on the above example discussion is shown as Table ii.i to

assist in summarizing these relations.

Table li.l

Illustrating Output-Source and Catastrophic-Degradation

Failure Mode Relations for a Transmitter

System output performance

attribute behavior

Degradation, e.g., carrier

frequency drift

Catastrophic, e.g., no

output

Source of failure within the system

Degradation Catastrophic

Oscillator drifted,

may not have a unique

source.

Open winding of

temperature control

oven.

Oscillator ceases to

oscillate, may not

have unique source. Supply voltage lost.

Whether or not a failure is catastrophic or degradation will not be a dominating

consideration in the ensuing discussion. That is, it is not absolutely necessary that

identification of one or the other failure modes be maintained in the model. This is

a key point in structuring a detailed reliability prediction model, as there is a

tendency to carry along too much detail in the notation which culminates in side-

tracking. Introducing any detailed failure mode at the source in a particular problem

may utilize any of several description methods which will be covered in the following

sections. The method depends on the form of the given information. Of course there

are certain forms which could prevail, as for certain commodities. The notation which

will be used does not specifically identify the type of failure as to catastrophic

or degradation. Of course, the person setting up the problem will have a classification

in mind for each mode which is introduced.
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ii. A Detailed Prediction Example

In order to aid the reader in becoming oriented a somewhat realistic problem will

be considered. Figure ii-i illustrates an electrical circuit, a regulated voltage

divider using a zener diode as a reference. The typical electrical notation are first

shown in capital letters and the equivalent functional notation which will be used

in Part IV is given in parentheses in small letters. This functional notation will

be defined and discussed in a more general vein in Sec. 12.

The notation which appears in Fig. ii-i plus several additional terms are

discussed below.

Z Zener reference diode, assumed to be a constant voltage

source over the current range of interest,

Resistors, each with a deterministic temperature relationship,

Input voltage,

Zener reference voltage,

Ambient temperature in =C,

Resistance of R I at 25°C,

Resistance of R 2 at 25°C,

Resistance of R 3 at 25°C,

Output voltage,

= Y2 Output voltage,

= 1,2,3 Linear temperature coefficient for the ith resistor,

= Y3 Resistance of RI at a specific temperature, Y3 = x4 + (x3 - 25)ki

= Y4 Similar to Y3' Y4 = x5 + (x3 - 25)k2'

Similar to Y3' Y5 = x6 + (x3 - 25)k3'

Current as designated in Fig. ii-i,

R I , R 2 , R 3

Eo = x Ii

EZ = x 2

x3

x4

x 5

x 6

E01 = Yl

E02

ki, i

R 1

R 2

R3 = Y5

I I = u I

12 = u 2

W Z = u 3

Current as designated in Fig. ii-i

Power of zener diode,
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u4

WR2 = u5

WR3 = u6

Ambient temperature of the circuit,

Power of R2, and

Power of R3.

O

I ll(Ul)

gi(xl ) Ez (x 2)

L

0

°C(x3)

RI(Y 3)

O

I2(u2) I

Z/_ R2(Y4)
-- E02(Y2)

R3(Ys) _ I(yl) I

O

Figure ii-i Regulated Voltage Supply

Note: The symbols in parentheses correspond to those used in the problem
formulation in this section.

Some of the variables are continuous and have known or assumed probability density

functions (pdf's).

Known pdf

P(Xllm I)

These are:

Comment

Xl, or El, has a probability density which is conditional

on no complete loss of EOI, which is designated m I.

P (x2 ,x 3) x2, or EZ, has a probabilistlc dependence with x3, or =C.

That is, temperature effect on the reference diode is not

known deterministically.

P(x 3) The probability density of temperature, which is the

marginal density of P(X2,X3).

P(x 4) Nominal value of resistor R I is independent.

P(Xs,X 6) Resistors R 2 and R 3 are of the same nominal value, and

have a probabilistic dependence; when one is high, the

other also tends to be high.
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The circuit is designated as having seven different failure modes:

j = 1

j = 2

j = 3

j = 4

j = 5

J = 6

J = 7

m.
3

Complete loss of El,

Drift of EOI (or yl ) outside of an acceptable interval

of values r

YI'

Drift of E02 (or y2 ) outside of an acceptable interval

of values F
Y2'

Catastrophic failure of Z,

Catastrophic failure of RI,

Catastrophic failure of R 2,

Catastrohpic failure of R3, and

Event that the jth failure mode does not occur.

Catastrophic failures noted above are those which might occur as influenced by

the internal stresses. It is known that each item is not initially catastrophically

failed. Additional known information concerns each catastrophic failure mode, m 4

though m 7. Relationships between the probability that these failure modes will not

occur and appropriate environments are known; thus P(mjl...environment(s)...) = __m_('''en-

vironment(s)...) are available for m 4 through m 7. Note that conventional graphs for

failure rate versus stresses such as those found in MIL-HDBK-217A [Ref. 27] could

provide this type of relationship.

The functional notation for deterministic relations will be such as Y3 =

y_(x3,x4) , P(m41u3,u 4) = m4(u3,u 4), and uI = Ul(Xl,X2,X3,X4).

The question is how to structure the problem for the probability that none of

these failure modes occur, where no assumption of independence is made involving the

features noted above. Each of the failure modes will be treated separately and then

they are brought together into a composite model.

Mode m I

Mode reliability P(m I) is some known value between 0 and i.
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Mode m 2

Electrical equations are conventional engineering deterministic ones and are

used for obtaining the performance attribute E01 (or yl ), i.e.

Y5X2

E01 = Yl Y4 + Y5
- Yl(X2,X3,X5,X6)

where Y4 and Y5 are known functions of x3, x5, and x 6. The zener reference voltage

x 2 is dependent on x 3 the ambient temperature and the joint pdf P(X2,X 3) has been

obtained. The mode reliability P(m 2) is the probability that Yl falls within the

interval of acceptable values, r . If p(yl ) denotes the pdf of YI' then
Yl

P(m2) = f P(Yl)dY •
r
Yl

However a difficult problem is implied by the above integration, that of obtaining

p(yl ) using the functional relationship given above.

In some few problems a transformation can be defined relating the new variable

Yl to the original variables x2, x4, x5, x 6 and the distribution of the new variable

obtained from that of the original variables by means of the Jacobian of the transforma-

tion. (See Ref. 51 for a description of the method.)

Usually the above approach is tedious or the integral cannot be obtained in a

closed form. In such cases, which is the usual situation, one has to use some other

approach. Often the method of moments is used in which Yl is expanded in a Taylor

Series using the first order terms (higher order terms may be used but seldom are) and

obtaining the moments of Yl (first and second order) in terms of the moments of

x 2, x3, x5, and x 6. Hence the distribution of Yl is approximated by the method of

moments.

Another procedure is to evaluate the integral

P(m2) = /
r

Yl

P(X2,X 3) P(Xs,x6)dx2dx3dxsdx 6

where r determines a region of integration of x2, x3, x5, and x 6. This is still

difficu[_ but some approximations may be possible and a Monte Carlo simulation could

be used to obtain the estimate. However the latter approach would require a very

large number of trials if P(m2) is near 1 and a high precision of the estimate is

desired.
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Although each of the above procedures is suitable for estimating the reliability

of this mode, the latter one will be required for bringing together all modes for a

single circuit reliability model. This will be treated later.

Mode m 3

The performance attribute E02 (or y2 ) is known:

E02 = EZ' Y2 = x2"

Mode reliability is defined to be the probability that Y2 (or x2) falls within P
Y2'

i.e.

P(m3) = f f P(X2,x3)dx2dx 3"

x 3 r
Y2

Mode m 4

Electrical equations needed here are the conventional ones for the power stress

W z •

W Z = u 3 = EZ(I 1 - 12 ) = x2(u I - u 2)

where

E i - EZ x I - x 2

Ii = Ul - R1 Y3

E Z x 2

I2 = u2 = R2 + R3 = Y4 + Y5

The mode reliability P(m 4) is defined as the probability of no catastrophic failure

of the zener reference diode Z. The relationship of P!(m4) to fixed levels of the

stresses of temperature °C and power W Z is known:

P(m4[Wz,°C) = P(m4[u3,u4) = m4(u3,u4).

The power u 3 is a function of x (all the x's) denoted by u 3 = u3(x). The ambient

temperature u4 is known, °C = x 3 = u4. Now x has a joint pdf denoted by p(x).

Hence the mode reliability is the expected value
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E[P(m41u3,u4) ] _ f m4[x3,u4(_)] p(x)dx.
X

The reason for obtaining the expected value of the probability of no failure given

the stress is the fact that some or all of the x's are probabilistic variables having

pdf's. If the failure occurred when the stress exceeded a particular value then the

probability would be obtained in a manner similar to that of m 2 and m 3.

Mode m 5

No electrical equations are used as the relation of P(m 5) contains only a single

stress, temperature, °C:

P(m51°C) = P(m51u4) = m5(u4) where u 4 = x 3.

Mode reliability is the expected value

E[P(m51u4) ] = / m5(x 3) P(x3)dx 3-

x 3

Mode m 6

Electrical equations are for the power stress WR2.

WR2 = u 5 = I_ R 2 = u_ Y4

where u2 is noted in m 4. Mode reliability is similar to m4:

P(m6 I°C,WR2) = e(m61u4,u 5) = m6(u4,u5)

where u 4 = x 3 and u5 = Us(X2,X3,X5,X6) = u5(x'), say where _' = x2,x3,Xs,X 6.

E[P(m61u4,u5)] = / m6[x3,u5(x')] p(x')dx_'
X v

Mode m 7

The development here is similar to m6, where Y4 for m 6 become Y5 for m 7.

m 7 reliability in functional notation is identical to that for m 6.

The
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Composite Reliability

The reliability of the circuit is the probability that none of the failure modes

occur;

R = P(mlm 2 ... m 7)

Although this probability can be expressed as the product of conditional reliabilities,

R = P(m I) P(m21ml)...P(m71ml .... , m6),

this does not aid in the evaluation of the reliability in this example due to the

commonality of the variables x to the various modes. Thus the mode reliabilities

which were formulated individually in the previous discussion cannot be multiplied

together to obtain the overall reliability. The circuit reliability is obtained by

the evaluation of a multiple integral which simultaneously considers the probabilities

of non-failure of the seven modes. Thus

R = P(m I) f

{Xl,X 4 }

f

x'CFyll

and I

x 'CFy2_

m4(_) m5(x 3) m6(_') m7(x') P(Xlml)d_

where all terms are as developed in the preceding discussion. The region of integra-

tion is a restricted one for only certain values of x' that is those contained in

F and F , is there a success. In words the reliability of the circuit is a multiple

i_egral Y2over the acceptable regions of the variables defined by bounds. The integral

contains the product of the conditional probabilities of non-failure of those modes,

conditioned on the environment distributions.

The above reliability expression is rather formidable, indicating that considera-

tion of dependence resulting from correlation between variables and from the effect

of the same basic variables on more than one mode reliability yields a complex

relationship.

A numerical integration would be tedious and require a computerized solution.

It would not seem possible to provide a single computer program to treat a very wide

class of these problems although specific subroutines are available to perform

numerical integrations. Thus one must use an approximate numerical solution. The

simplest approach would seem to be a Monte Carlo simulation. Numerical computation is

discussed later in Sec. 12.2.
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12. General Model Development

The features which were contained in the example problem of Sec. ii are

brought together and are expressed in general notation. This notation explicitly

allows much detail (known or starting information), but only part of this detail

would be expected in a specific problem. Keep in mind that the example of Sec. Ii

was an illustration of this generalization.

In Sec. 12.1 a prediction model is developed for the series situation where

occurrence of any failure mode will imply system failure. Numerical solution

approaches are briefly covered in Sec. 12.2 for the series situation model. Next,

Sec. 12.3.1 briefly comments on extending the series model to include the explicit

treatment of time. The final Sec. 12.3.2 comments on the extension of the series

situation model to a parallel situation where some failure modes can occur but the

system remains unfailed.

12.1 Series Situation Model

A detailed reliability prediction model is developed for the situation where

the occurrence of any failure mode results in system failure. This will be referred

to as the series situation model. However, the reader is cautioned not to expect

that the final composite model will literally be a product of individual probabilities

of non-failure of each mode. Explicit consideration of mode dependencies results in

the final composite model being of a different form than a product.

12.1.1 Notation

Much of the material in Secs. I0 and Ii pertains to the selection of notation.

Seeing how to structure the detailed reliability prediction problem considered here

is aided by an approach which leans toward using common notation for mathematically

similar descriptions rather than using different symbols for the different physical

features having common mathematical descriptions.

As conventienally used:

t Time,

y=y(x), w=w(x) Functional relationship,

Vector, i.e., _ = (Xl, x2, ..., Xn) ,

P(A) Probability of the event A,

p(x) Probability density function (pdf) of x, and

F Bounds (region of acceptable values),

Additional notation which is not so conventional and which will be explained

in the following sections.

d i Event that a failure mode which will be referred to as direct-
fixed does not occur, i = i, 2, ..., £. The event that this

failure mode does occur is 3. .
1
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e. Event that a failure mode which will be referred to as direct-
J

variable does not occur, j = i, 2, ..., m. The event that

this failure mode does occur is e.
J

b k Event that a failure mode which will be referred to as bound-

crossing does not occur, k = i, 2, ..., n. The event that

failure mode does occur is bk"this

The d, e, and b will replace the m used in the example problem of Sec. ii as

the failure modes illustrated there are now being classified into the three

types of mathematical descriptions which were used. Additionally,

x Common variable,
S

Yv Performance attribute,

u Environment,
W

The shorter expression as noted below will be used to indicate the joint

occurrence of events.

Conventional Form:

Shorter Form:

P(dl, d2, ..., di, ..., d£) = P(d I) P(d21d I)

•-" P(dildl, d 2 .... , di_ I) "'" P(d£1dl, d 2, ..., d£_ I)

= H P(dild' ) where d' thus indicates appropriateP(d)
i=l

conditional events.

12.1.2 Common Variables

There are common variables x which influence the probability of certain failure

modes. The common variables may be deterministic or probabilistic; this discussion

emphasizes them as probabilistic. The complete probability density p(_) of all proba-

bilistic common variables is given information, including any dependence. No special

acknowledgement is made in the p(_) notation for those common variables which are

deterministic. Examples in the problem of Sec. ii of common variables which were

probabilistic were all x's, for example, Xl, input voltage; x3, ambient temperature;

and x4, resistance of R 1 at 25°C. Thus common variables could be interface char-

acteristics such as supply voltage, load, or temperature. Also they could be internal

characteristics of parts such as resistance or beta.

The common variables appear in functional relationships for obtaining perform-

ance attributes, Yv yv(_) for all v and environments u = u (x) for all w as in
W W --

the conventional engineering equations where all variables are deterministic. Examples

of performance attribute equations were those for the y's in the problem of Sec. ii,

and examples of environmental (or stress) equations were those for the u's. Proba-

bility densities of the performance attributes _ and the environments _ will be needed

end are not usually known. They can be determined (in concept) from known probability
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densities of the common variables _ and the functional relationships y(_)'s. When

the probability density of a performance attribute or an environment is known, in-

cluding any known dependence with common variables, they will be initially classified

as common variables. Thus if a p(y, _) or a p(u, _) is initially known, the y or u

will be introduced into the composite problem structure as y = x or u = x. This is

done for two reasons. The first is to avoid additional special notation for what

are "special cases" in the context of the more complex composite model being formu-

lated. The second reason is to assist in insuring that some of the more devious

correlation effects are included, such as the following examples. In the problem of

Sec. ii zener reference voltage x 2 was directly a performance attribute in mode m 2

where Y2 = x2' and also appeared in several environment_ and performance-equations.

The performance attribute probability densities which are obtained directly from test-

ing, either by necessity (its y = y(_) not known) or for convenience, would tend to be

of this nature. The temperature x 3 also appeared in several environment- and

performance-equatlons, including that for m 5 where it was directly an environment

u4 = x3 •

12.1.3 Modes

An undesired event which may or may not occur is a failure mode, e.g., the

loss of an input voltage, the opening of a resistor, or the drift of a performance

attribute outside prescribed bounds. There may be several failure modes for a single

item, e.g., the opening or shorting of the resistor, or a mode may involve more than

one item, e.g., an output voltage of an amplifier comprised of multiple items. A mode

may be a feature of other than hardware, e.g., physical shock impulse or a human error.

Thus, in general, a failure mode can be some undesired feature of a part within

a system, an input to a system, or an output of a system, including human features.

Further, what is physically a single item at the smallest level of repair may have

more than one mode associated with it, and a mode may involve more than one physical

item. The problem treated is primarily concerned with the non-occurrence of a failure

mode. The probability that a failure mode will not occur is either known or can be

determined from functional relationships and probabilistic methods.

Modes are classified below according to the manner in which they are treated

in the analysis. System and part failures are commonly thought of as catastrophic

or degradation, where a catastrophic failure is an abrupt change in some characteristic,

and a degradation (or drift) failure is a characteristic value outside of some bounds.

In general, each of the mode description types which are noted below may be for an

event which would commonly be considered as either a catastrophic or degradation

failure. That is, there is not necessarily a unique form of the mathematical des-

cription for either a catastrophic or a degradation failure. Catastrophic and
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drift failures are thus just a different method of classifying failure modes from

that which is developed. The example discussed in Sec. i0 illustrates this point.

Direct-Fixed Mode. The reliabillties of these modes are fixed values which are

known. These modes may or may not be dependent on each other, and the dependencies

are known. An example of this mode in the problem of Sec. ii is m I, the loss of the

input voltage. If the possibility had been considered of the parts being initially

catastrophically failed so that no circuit operation was ever possible, these would

also have been modes of this type.

The reliability of a single mode, d, is

0 < P(d) < 1 .

The reliability of all direct-fixed modes is

£

R = P(d) = H P(d il_') (12-1)
i

In general these failure modes would be interface events and internal part events

which preclude the existence of some common variable. Thus in the example cited

the occurrence of _i' complete loss of the input voltage, will mean that some value

of the input voltage (and common variable) x I, will not be possible, thus P(Xllml).

Also direct-fixed modes could be events completely aside from all common variables.

Direct-Variable Mode. Reliability of each of these modes is conditional on

some environment level, where there might be dependence between mode reliabillties

at fixed environment levels. Each environment is a function of the common variables.

Examples of direct-variable modes in the problem of Sec. ii were m 4 through m 7 which

were for the non-catastrophic failure of the parts.

Reliability of a single mode is

Given: e(el_) = e(_) u = Uw(X) for all w, and p(_)
' W

Obtain: P(el_) = e(_) = e[_(_)]

R = P(e) = fe(_) p(x)dx .

X

Thus, mode reliability is obtained by an averaging, the expected value operation.

Figure 12-1 illustrates the development of this type of mode reliability description.

Reliability for multiple modes is

Given: P(ej le', u) = ej(u), uw = Uw(X)

Obtain: P(ejle' , _x) = e.(x)3-- --ej[u(x)]

m

R = e(e) = f [II ej(x)] p(x) dx
_x j

for all w, and p_)

(12-2)
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P(elu)

U X

p(x) P(elx)

X X

Figure 12-1 Direct-Variable Mode
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Environments _ in these modes for electronic parts typically would be stresses

such as current, _ power, or temperature. The deterministic equations u = u (x) could
W W --

be conventional electronic equations for obtaining stresses. Note that it is possible

the mode reliability may be conditional on an environment where the environment is

also a common variable, or some u = x . This was the situation in the problem of
w s

Sec. ii where the reliability of m 5 was conditional only on temperature, and tem-

perature also appeared in environment and performance euqations. The direct-variable

modes are where the type of environment information presented in MIL-HDBK-217A

[Ref. 27] would be applicable, but note that this reference infers explicit treatment

of time which has not yet been introduced here and it always assumes mode independence

at fixed environment levels, as did the problem of Sec. ii.

Bound-Crossing Mode. The reliability of a single bound-crossing mode is the

probability that a performance attribute y remains within designated bounds F
Y

Bounds are established either on the basis of judgment or on a more theoretical basis

such as a condition for oscillation of an electronic circuit oscillator or for a

stress-strength problem. Each performance attribute is a function of the common

variables _. Examples of this mode in the problem of Sec. ii were modes m 2 and m 3

for the output voltages.

Reliability of a single mode:

Given: y = y(x), p(_), F = F_ < y < F-- y u

Obtain: R = V(b) = / p(a)d_.
F

Y

Thus, the region in x such that F1 < y(x) < r is the probability of success.

Fig. 12-2 illustrates the development of this type of mode description.

Reliability of multiple modes is:

R = e(_) = f p(_)dx , (12-3)

F

where

Yv = Yv (_) and £I < Yv < £ for all v.u

An important point to note for the bound-crossing mode is that treatment of

this mode does not involve the expected value operation. Rather, the bounds on the

performance attributes F yields two complementary regions in the common variables
2

_, with probability density p(_); values of _ in one region will result in failure

and values of x in the other region will result in acceptable performance.
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X X

P(Y)

F y F
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Figure 12-2 Bound-Crossing Mode
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Discussion of computation, i.e., transformation, method of moments, and Monte

Carlo for obtaining the reliability of this type of mode description was contained in

mode m 2 in the problem of Sec. ii.

12.1.4 Composite Model

The three types of failure mode descriptions of Sec. 12.1.3 are brought together

into a composite series model where the occurrence of any failure mode will mean

system failure. Consider first the direct-flxed modes.

P(d) = H e(dild') where 0 • P(dild') < i .
i=l

If there were no dependencies between any of these modes, then the resulting product

of mode reliabilities would be the simple model which is so widely assumed for re-

liability of items in serial logic.

Bring in the direct-variable modes:

P(_, i) = P(!) P(_Ig)

m

= H P(dil_' ) f H P(ejl_, _', _) p(_Id)dx
i=l _ j=l

where

P(ej Id, _e', u) = e=j(u),_ Uw -- Uw(X)_ for all w .

The multiple mode descriptions above are expressed conditionally on other direct-

variable modes. A reason is that several different modes may apply to the same

physical item. For example, if a two terminal electronic part has the open and short

failure modes explicitly treated, then the part can either fail by (open) or

(shortlno open) or vice versa. This possibility was not explicitly treated in the

problem of Sec. ii. Introduce the bound-crossing modes for the complete model

R = P(d, e, b) = P(d) P(e, b ld)

m

= H P(dild') f f H P(ej Id,e', u) p(xld)dx
i=l {x'}{_x"cr } j=l

= _x_") ' -- "where _x = (x', _x"), Yv Yv _ , x do not appear in any Yv Yv (x)' and

F£ < Yv < FU for all v , and the supporting information noted above for the

(12-4)

dlrect-variable modes still applies.
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Equation 12-4 is the composite reliability prediction model. This is the

general functional notation counterpart of the specific problem functional notation

reliability prediction model which was formulated in Sec. ii.

12.2 Numerical Calculation

An approach for numerical calculation of the composite reliability model

using Monte Carlo simulation is shown in Fig. 12-3. Step (3) in Fig. 12-3 can be

omitted by using n instead of c in the denominator of step (4) if no estimate is

wanted of the reliability of bound-crossing failures. It is also possible to obtain

an estimate of the dispersion of the distribution of reliabilities, although this is

not shown on Fig. 12-3.

Another approach for numerical calculation would be to use a discrete approxi-

mation of the complete region of the common variables _ instead of sampling the

region. Figure 12-4 shows this approach. A grid network would be established cover-

ing the complete region and resulting in discrete cells. This approach would be useful

where some of the input information would be obtained directly from testing at the

nodes of the grid network. A discrete approximation approach would most likely be

applied to a limited number of common variables. In an experimental application of

notions similar to these in Part IV to a tilt-stabilization platform, temperature

and input voltage were considered as common variables [Ref. 24]. A discrete

approximation approach was used Of the region of temperature and input voltage, where

testing was conducted at each node to obtain input information for a bound-crossing

failure mode.

Any realistic application of the concepts in Part IV would utilize a modern

digital computer. It is not felt that numerical computation would be the most limit-

ing factor in realistic applications.
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(1)

(2) Determine if any

each sample

Generate (3) Compute estimate of prob-
Sample common variables p(_]d) n samples

of x ability of no bound-

- crossing failures

, *,_,_,-P(_l_)- c

bound-crossing failure for]_ n

L-._--_--..-------J

< for all v I c successes (all Yv

F_ Yv(_) < _ ] within respective bounds)

i_ for each of successes
c

I

Compute probability of no direct-varlable failures for each sample I

and average these E [ _ P I_,_' ,_] i_(elb,d) _ c j=l (ej

(4)

(5)
Compute probability of no direct-fixed

failures

P (d_)

' 1

(6) Compute estimate of overall reliabilit_

E p (di id' )
i

R : _(d) 5(bld) P(__Ib,d_)

Figure 12-3 Monte Carlo Simulation for Approximate Numerical Calculation
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Approximate common variable joint density

f p(xld)dx = 1 _ zE ez(xld)__ = 1
X

where z = cell

Determine if any bound-crossing failure at

F£ < Yv (x)- Pa for all v

_x
!

for each Z lyes ' drop (_)

r for these z

no, call z'

Compute probability of no bound-crossing and dlrect-variable modes

m

r. H (x_)1
P(b'eld) = z,{[J=iP(ej'd'e''X--z ')] Pz'

R = P(b,e,d) = 11 P(dl}d'
i=l

overall reliability by considering direct-flxed modes

Figure 12-4 Approximate Numerical Calculation Using

DiscreteApproximatlon of Common Variables
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12.3 Additional Considerations

Questions naturally arise concerning extensions to explicitly treating

time and to parallel situations. The essence of the approach has been illus-

trated thus far, and brief comments are given below on these questions. The

comments are brief and qualitative because mathematical notation becomes even

• more complex. Some key features are noted which would be useful to one seriously

pursuing the problem. That is; one will have to develop the detail and these features

are noted for guidance.

12.3.1 Explicitly Treating Time

As might be expected, explicitly treating time in the series situation

model is a reasonably straightforward extension of the approach used in Sec. 12.1.

The concept of common variables and of the three types of mode descriptions remains

unchanged. Mathematical descriptions of reliability measures as functions of time

for the direct modes would be as described in Secs. 4.2 and 4.3 and of time-varying

probability density functions for common variables and performance attributes would

be as described in Sec. 5.4. Thus, for common variables the time dependence is

denoted by p_; t) and for a particular variable x (t) = x (_; t) for all s, where p(_)
s s

is the pdf of the constants, _ = (al, a2, ..., an).

Nothing unique exists about the direct-fixed mode. There would be great

practical difficulty in obtaining the direct-variable mode reliability descriptions

conditional on a time-varying environment

P[ej(t)Id , e', _(t)].

This would result from the general situation that a large variety of possible forms

of _(t) are possible. It is, therefore, difficult to develop tables or other standard

information for general use with time-varying environments. A situation which is more

practical is where the direct-variable mode reliabilities are functions of time, but

the probability densities of the common variables and thus the time varying environ-

ments are not functions of time, i.e., conventional failure rate graphs of Ref. 27.

The bound-crossing mode will have the unique feature that there could be a specific

failure time for each possible value of a (where _ is that noted above for the common

variables). This will have the effect of entering into the composite model as trun-

cations on the reliability time-functions of the direct-variable modes. Both mono-

tonic and some non-monotonic performance attribute variations could be treated, as

they both become first-crossing problems.
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12.3.2 Parallel Models

The situation where the occurrence of certain failure modes does not mean

system failure will be referred to as the parallel one. Before proceding to more

involved considerations it is pertinent to note that the expected value operation

as cited in Sec. 9.1 can be applied to conventional reliability models for redundancy

where the environment is a probabilistic variable. This straightforward approach is

useful in certain practical problems. Where the complexities of Sec. 12.1 are present,

branching modeling concepts could be used. First, the series situation model of 12.1

would be structured where there are no failure modes. For other non-failed system

states some of the input information may be different than for the system-state where

there are no failure modes. For instance, some common variables could take on values

of zero, and performance attribute and environment equations could change. System-

state change sequences would have to be traced, and a detailed reliability prediction

model developed for each sequence. Where time is explicitly treated, the time that

system-state changes will occur is an explicit variable, and time-wlse convolutions

could be used in tracing through the detail. Thus, explicit treatment of time in

redundancy situations would significantly increase complexity.
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13. Concluding Remarks for Part IV

Each number below refers to the corresponding question noted in the introduction

to Part IV. Replies to these questions are intended to serve as concluding remarks

to Part IV. The replies take into consideration mainly the material presented in

Part IV.

(i) The first question concerns the conventional assumption of probabilistic

independence in reliability models. The probabilistic dependence treated in Part

IV results from various sources. Consider first the series model: (a) the most

straightforward dependence occurs in the given conditional probabilities in the direct-

fixed and the direct-varlable modes. (b) the common variables can bring about depend-

ence among direct-variable modes in addition to that noted in (a), dependence

among bound-crossing modes, and dependence between direct-variable and bound-crossing

modes.

Also to be noted here is to avoid confusing probabilistic dependence with error

in structuring the problem. Where there is a deterministic relation y = y(x) between

a performance attribute and common variables, and if some of the common variables

were forced to be treated as modes in that some judgment-based bound was put on each

of these common variables and the functional relationship ignored, then simply the

erroneous reliability prediction would be ohtalned. Additional dependence is introduced

when a general parallel model is developed as features of the series model may be

conditional on the system state.

(2) A key feature in structuring the composite reliability prediction models

of Sec. 12 is recognition of the distinction between failuremodes, common variables,

performance attributes_ and environments. This distinction is of the sort which

tends to be obvious in hind-sight but was not beforehand. A distraction seems to

be a tendency to want to treat separately different real-world features which are

really mathematically similar in the sense of structuring the composite reliability

prediction model. For example, for electrical equipment there is a tendency to separate

the internal part characteristics from the interface characteristics.

(3) The typical deterministic equations of engineering have been divided into

two categories, those concerned with performance attributes and those concerned with

environments. The performance attribute equations are used for the bound-crossing

mode. A performance attribute may be either an output of the system or it may be

some internal performance of the system. The latter is not of interest to the system

user, but there may be certain bounds within which the internal performance must

remain or else the output(s) of the system, which are of interest to the user, will

be affected. The environment equations are used in the direct-variable mode.

137



4) The discussion in Sec. i0 illustrated that there is no l-to-i correspondence

between classification of a failure at a point of repair (source) into catastrophic

or degradation and a similar two-way classification of the manner in which the system

performance is affected. The models which are developed in Sec. 12 are based on

a classification system concerning the mathematlcal manner by which an individual

failure mode is described, and do not emphasize the classification system of catastrophic

and degradation failures.

(5) The composite models developed and presented in Sec. 12 show how the various

features are brought together. These composite models do not resemble the more familiar

prediction models which are widely used. Bringing the various failure mode types

and common variables together for even a simple series situation is shown to be com-

plex. Note also that the composite model includes many of the slngle-item reliability

measures of Part II and the conventional reliability models of Part III.

(6) The complexity of the composite reliability models in Sec. 12 and the gen-

eral lack of necessary input data combine to support the current practices of using

simpler models. It is posslhle that there may be problems where some features of the

composite model would offer some return which would be worth the effort. Certain

relatively simple systems which have high safety implications might warrant more com-

plex analyses. An example might be relatively simple devices concerned with explosives,

such as detonation circuits. The need for high reliability might Justify the efforts

necessary to develop the appropriate data. Another possible application area would

be at a systems level with regard to redundancy. This would be as discussed in

Sec. 12.3.2 concerning the use of the expected value operation for redundancy where

some features of the composite model are dropped. In some situations there may be

some value in using features of the composite model in efforts to achieve balance in

design with regard to efforts to reduce various failure modes. In such cases little

emphasis would be given to the absolute numerical value of the reliabillty prediction

number, but rather the values would be compared for different design approaches. Also

note that in a real-world problem, it may be that only a small number of the variables

present in the problem will require treatment in the depth implied by the detailed

model.

Generally speaking, experimental applications and further investigation are

necessary in order to determine if more complex reliability prediction models along

these lines have anything to offer in a practical sense. Of course, before such

investigations can be attempted it is necessary that an approach to structuring the

problem be developed, and this necessary first step was an objective of the investi-

gations reported in Part IV.
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Motivation for pursuing detailed reliability prediction models includes main-

tainability objectives as well as reliability ones. A detailed reliability model

might eventually be useful for maintainability improvements concerning automated

predictive maintenance, test point selection, and repair procedure development. These

potential maintainability uses would generally require models for parallel con-

figurations.
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APPENDIX

Mathematics of Prediction - Probability

The calculus of probability plays an important part in the prediction of

system reliability. The basic definitions and distribution theory (discrete and

continuous-univariate and multivariate) play a basic role. The Boolean algebra and

the calculus of probabilities provide the appropriate analytical tools for manipu-

lating these probabilistic inputs. In the calculation of a probability of system

behavior there is little choice in the simplifying approaches that can be taken

except to use some of the reliability bounds and approximations. Even to use these

techniques requires a formal introduction to the basic methods and a thorough under-

standing of the assumptions implied in their use.

In order to make the written material as brief as possible Summary tables

have been prepared to cover specific topics such as continuous variables, Boolean

algebra, calculus of probabilities, etc. Supporting each of these tables are cited

references, discussions and examples demonstrating the techniques in the correspond-

ing table. Appendix references are contained along with all other references in the

single reference section.
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A.I Continuous Random Variables and Distributions

A continuous random variable is typically one that can take on any value in an

interval. For example, the lifetime of a transistor under a certain set of test

conditions could be any time greater than zero. For a very large population of

transistors one would expect the lives to be scattered or distributed over a large

interval of time. Continuous distribution functions are used to describe such

statistical behavior. Table A.I-I summarizes basic concepts concerning continuous

random variables and their distributions. A summary of several common distributions

is presented in Table A.I-2. Given a density function p(x) the characteristics can

be evaluated by application of the formulae in Table A.I-I.

Central Limit Theorem

One of the most important results in statistics is the central limit theorem (CLT)

which states that if x l, x 2, ..., Xn are independent random variables al_ having the

same distribution function F(x) with mean _ and standard deviation o, then the sum

n

S = _ X.

i
i=l

is asymptotically Normally distributed with mean np and standard deviation o_n, i.e.,

so

_ f -i 21 exp{ _ (s - n_) }ds
P(s < so ) 2,/_-_o_n

for n sufficiently large. This result is true under very general conditions on F(x);

if all variables have the same distribution then it is sufficient that the second

moment of x be finite. A more general form of the CLT and additional discussion of

the above case appear in Ref. 52.. An important aspect of the theorem is how large

n must be before the normal approximation applies. Clearly this dependence on n is

conditioned by the shape of the distribution. Sums of variables having highly

skewed distributions would tend to Normality more slowly than for those having

symmetrical or more nearly Normal distributions. In the latter case sums of variables

with n larger than 25 or 30 are very closely approximated by the Normal distribution.
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2,

Table A. i-i

Continuous Random Variables And Distributions

x is a random variable (r.v.) having density function p(X) and

(cumulative) distribution function F(x).

X

F(x) = fp(t)dt (t is a dummy variable) and

p(x) = dF(x)
dx

3,

4.

5,

Property: F(-®) = 0; F(_) = i.

Specifically for the range R over which x is defined

fp(x)dx = i.
R

a

Probability: P(x <__a) = fp(x)dx = F(a)

b

P(a < x < b) = /p(x)dx = F(b) - F(a).

a

6. Expectation: For any function g(x),

E[g(x) ] = fg(x) p(x)dx.

R

7. Mean of x (first moment about the origin):

8,

E(X) = fx p(x) dx = _i"
R

Mean square of x (second moment about the origin):

E(x2) -- fx2p(x)dx = v2"
R

9. k-th moment of x with respect to the origin:

E(xk) = /xkp(x)dx = _k"
R

In precise mathematical notation, X is used to denote a random variable, then

F(x) = P(X ! x), and for a continuous variable p(x)dx = P(x ! X ! x+dx).
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i0. Variance of x (second moment about the mean):

11.

E{ [x-E(x) ]2 } = °2(x) = /[x-E(x) ]2 P(x)dx = _2"
R

k-th moment of x about the mean:

12.

E{[x-E(x)]k} = /[x-E(x)]kp(x)dx = _k"
R

Relationship between the first four moments:

P0 = _0 = i

_ = 0

P2 = _2 - _' _i = mean value of x

_3 = 93 - 392_i + 2_

_4 = 94 - 4_3_i + 69291 - 39_.

13. Truncated distribution, FT(X) , of F(x):

FT(X) = { F(x)/F(T) x <__T
1 x> T.

Example

Let x be a random variable with density function

-_x
p(x) = he , _ > 0, x > 0.

This is the well-known Weibull density function with 8 = I/% and k = I

or the negative exponential density function.

Distribution:
x -At _ 0, x < 0

F(x) = Jle dt = 1 -hE0 l-e , x>0

143



Probability: }le-lXdx -21P(I < x < 2) = = e -I - e

1

or

-I -21
F(2) - F(1) = --(l-e-21) - --(l'e-l ) = e - e

Mean: E(x) = _Jlxe-lXdx
r(2) 1

= l - l' (r(k) = (k-l)!).
0

Variance:

Oo

i
02(x) = f(x- i/l)21e-lXdx = l--_-.

0

k-th moment about the origin:

oo

_k = /xk le-lXdx =
0 I k
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A.2 Discrete Random Variables and Distributions

A discrete random variable is one that takes on a finite or a countably infinite

number of values. For example, a binomial variable takes on two values corresponding

to a success or a failure, such as tossing a coin and the occurrence of a head being a

success. On the other hand, the number of telephone calls on a given line for a

specified time may be approximated by a Poisson variable for time intervals of

"constant density". The number of calls might be considered to take on any one of a

countably infinite number of values, 0, i, 2, ..., etc.

Table A.2-1 summarizes the definitions and notation for the characteristics of

distributions of discrete random variables. Table A.2-2 contains some of the common

discrete distributions and the means and the variances. Ref. 53 contains a complete

discussion of many discrete random variables and the pertinent characteristics.

Example

Suppose that it is desired to obtain the probability of three or fewer

failures in a time interval of length t where an item upon failure is

replaced by a new item. Suppose further that the exponential failure

time distribution is applicable. Let the failure rate be X = 0.01/hour

and the time be 200 hours.

From the above information the mean or expected number of failures is

2 items. Furthermore the probability of x failures is given by the

Polsson formula and thus for three or fewer failures the probability

is expressed as

e-220 e-221 e-222 e-223

e(x ! 3) = 0----_+ i----_+ 2----_+ 3----_

= 0.8569.
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A.3 Multivariate Distributions (Emphasis on Bivariate Case)

Consider the situation in which two or more measurements on a part are being

obtained, e.g. the equivalent h-parameters of a transistor. These two measurements

would have a joint probability density function (pdf) p(x, y), say, where x and y

denote the respective measurements. If the two variables are statistically independ-

ent then

p(x, y) = Pl(X) P2 (y) '

and hence the joint density functions can be written down knowing the individual pdf's.

If the variables are not independent the multivariate density function can be obtained

by assuming a particular form such as the Normal density function and estimating the

unknown parameters from available data.

Most of the properties of bivariate (two-variate) distributions are straight-

forward generalizations of the univariate distributions given earlier. The new

concepts are those of conditional and marginal distributions, covariance and correla-

tion. The generalization of these results to multivariate distributions is easily

made and one should see Ref. 51 for these results.

Independent Random Variables. If two variables x and y are independent then

the covariance of x and y, denoted by Coy(x, y) is

Cov(x, y) =//(x-E(x)) Pl(X)(y-E(y)) p2(Y)dxdy = 0.

However the inverse is not true, i.e. two variables may have zero covariance (or zero

correlation i.e. @(x, y) = 0) but not be independent. For example, suppose that

u and v are independent variables, and let x = u + v, y = u - v. Then

E(xy) = E(u 2) - E(v 2) = 0, E(y) = 0, and

Cov(x, y) = 0 and O(X, y) = 0.

However, x and y are dependent. See Ref. 17 for additional examples. Thus the

correlation is not a general measure of dependence but rather a measure of linear

dependence of two variables in physical terms; the correlation coefficient is a

dimensionless covariance.
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2Q

3..

Table A.3-1

Bivariate Distributions

Let x, y be a pair of random variables having the joint distribution function

F(x, y) and density function p(x, y).

ffp(x, y) dxdy = i, where R is the region over which x and y are defined.
R

X/p(u, v) dudv = F(x, y).
--1=o--oo

4. F(--, --) = 0, F(_, _) = I.

_F(x, y)
5. p(x, y) =

_x_y

db

6. P(a < x < b, c <_ y <__d) = ] / p(x, y)dx dy

C a

= F(b, d) + F(a, c) - F(a, d) - F(b, c).

7. E(g(x, y)) = //g(x, y) p(x, y)dxdy.

R

8. E(x) = ffxp(x, y)dxdy.

R

9. If x and y are independent random variables (r.v.'s) then

p(x, y) = Pl(X) p2(y) and

E(x) = /x Pl(X)dx and E(y) = /y p2(Y)dy.

I0. E(xy) = f/xy el(x) p2(Y)dxdy
R

= E(x) E(y) if x and y are independent r.v.'s.

ii. E(x - E(x)) 2 = o2(x), E(y - E(y)) 2 = o2(y).
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12. E{(x -E(x))(y - E(y))} = Cov(x, y) = Covariance of x and y

= If Ix - E(x)][y - E(y)] p(x, y)dxdy.

13. Correlation of x and y

where

= p{x, y} = Cov(x, y)/o(x) o(y)

g(x) = [o2(x)] I/2 and o(y) = [g2(y)] I/2

14. Marginal distribution of x is given by

15.

Pl(X) ffi f P(x, y)dy.
R
Y

The conditional distribution of y for given x is given by

p(ylx ) = P(x, y)
Pl (x)

= p2(y) if x and y are independent r.v.'s.

Example

Let x and y have a bivariate density function

i
p(x, y) - exp{

1

2(I-c 2)

First of all note that

P(X, y)dxdy = I

since by completion of the square of the exponent

p(x, y) = i ffexp{
2_-_

1

2(i-c 2 )

(x2 - 2cxy + y2)}.

(x 2- 2cxy + c_ 2)

(c 2 - l)
+ 2(l_c 2) y2}dxdy •

If the variables are transformed as follows:

u = (x - cy)I/ir7r

v = y
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then

p(u, v) -
u2 v 2

1 ffexp{-( T+T )}du dv,
2_

using the fact that the Jacobian of the transformation is given by

(A.3-I)

i/

3u _u

3x 3y

3v _v

8x 3y

= 1/

(A-3.1) can be written as the product of the integrals

u2 v 2
Oo _ -- oo -- --

1 fe 2du • i____fe 2dv
2_7_-_ 2_7_-_

1/ ¢iSc-Z - c / ¢i-s_

0 1

__ d-:h-z .

Since each is the integral of the standard Normal density function the above product

is unity.

Next the marginal distribution of y is given by

p2(y ) = fp(x, y)dx

1 exp{ - y2 }
2

Hence the conditional distribution of x given y is

= i (x - cy)2}.
p(x[y) = p(x, y) 1 exp{- 2(i_c2 )

P(Y) /2_(i-c 2)

Mean, Variance and Covariance Formulas

be n random variables with means B I, _2' "''' _n and
Let x I, x 2, ..., x n

2 . 0 2 respectively and correlations PI2 (= P(Xl' x2))" 013' "'''variances o , 02 , .. , n

The following results are true independent of the distributions of the
0n-l, n"

variables. Let y be a linear combination of the variables given by

X •

Y = cO + ClXl + c2x2 + "'" + Cn n
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Then the mean and variance of y are denoted by _ and a 2 and are given by
Y Y

n

py -- c o + ClP 1 + c2P 2 + ... + CnP n = c o + [ eiP i
i=l

o2 2 2 + 2 2 c2o2
= c2o 2 + ... +Y Cl°l n n

+ 2P12ClC2OlO 2 + ... + 2Pn_l,nCn_iCnOn_lO n

or

n

0 2 _ 2 2 +2 _ _
= cio i cicj 0ij °i°j

Y i=l i<j

where o i is the standard deviation of the i-th variable. The above formulas are true

in general and one notes that the mean _y of y does not involve the correlations.

Now if the variables are uncorrelated (if they are independent as indicated

previously) the formula for the variance reduces to

02 = 2 2 + 2 2 + . + C202
y Cl°l c2°2 "" n n"

Now consider two functions

Y = co + c.x. + ... + c x
U .t i n n

w = £0 + £1Xl + "'" + £nXn '

then the covariance of y and w is given by

n n

i "'" o2+ I  l jCiOjoi ij.Coy{y, w} = ci£io + + Cn£n n j=l i-

If the functions are not linear it is often possible to use a Taylor series

expansion of the function f(_) and then apply the mean and variance computations

to this form. These formulas must be used with care, e.g. by checking the magnitude

of the errors which may result in using them. Thus if

y = f(_)

then

1 82f J Ax 2
8 f Axi +_[ 3x_= f(_) + _ _-_i _ __ 1
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1 _2f I_xi--_-x j AxiAxj' Axi = xi - _i'

and hence using only the first order terms

wh e re

_y = f(_)

02 : _( 3 f I) 20_y _ l'

_-- = (_i' _2 .... ' _n )'

and where 3 f [ denotes the evaluation of the derivative at _.

_xi I__

The above results are summarized in the following table.

Table A. 3-2

Mean, Variance, and Covariance Formulas

General Case for Single Function.

If y = cO + ClX 1 + c2x 2 + +•.. CnX n,

then _y = co + Cl_ 1 + c2_ 2 + ... + Cn_ n = Co + { ci_i

= CiO i cicj °i°j Pij •
Y i ij

i#j

and

Variables Uncorrelated.

by co + Cl_ 1 + ... + Cn_ n

n

02 _ 2 2= CiO i •
Y 1

n

co + _ ci_i
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General Case for two functions.

and

If y = co + _ cix i

w = £0 + _ £jxj

then

n n

Cov(y,w) = _ _ici£joicjOij .
i=l j=

If xi and xj are uncorrelated, i.e. Oi j

Coy(y, w)

General Case for single nonlinear function.

If y = y(x), x = (xl, ..., Xn)

then using only a first order approximation

and

= 0 for i # j, then

-- _ ci_io2.

Uy = Y(L), L = (_i' ..., Un ), vector of means,

y _x i _ m
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A.4 Calculus of Probabilities

Starting with certain definitions and axioms several useful theorems of the

calculus of probabilities can be derived. Eight such theorems are given in Table A.4-1

A major difficulty in reliability literature stems from the notion of statistical

independence, often called just independence. This notion is basic to many reliability

calculations, for it is often assumed in these calculations that the failure of one

item in a system is independent of the failure of all other items in the system. In

non-probability language, two events are said to be independent if knowledge of the

outcome of one in no way affects the outcome of the other event. The simplest example

of independent events is perhaps two tosses of a coin - the result of the first toss

in no way affects the outcome of the second toss, so the events are independent.

As a more pertinent example, suppose two amplifiers are selected at random from a

collection of i00 amplifiers from a production process. Does knowledge concerning

the value of current gain for the first amplifier alter in any way the probability

that the current gain for the second amplifier falls in any given interval? If the

answer is that it does not, then the two observations of current gain are independent.

In applications these results would usually be treated as independent because if the

current gain distribution were F(x), the observation of an x I for the first amplifier

would not aid in locating the value x 2 for the second one as it presumably could fall

anywhere on the defined region R for x with the same probability distribution F(x) as

that for the first observation.

Consider as another example the measuring of the current gain Yc and the voltage

gain Yv of a single amplifier. Does knowledge of the value of current gain alter

information concerning the voltage gain? Chances are that it would because high

values of Yc may correspond to higher than average (or lower than average) values of

Yv and vice versa. Thus it is normally assumed that such variables may be dependent

unless data analyses imply otherwise.

Similar examples can be considered in the reliability prediction area. If the

event of failure of one of two items in parallel in no way affects the failure

behavior of the other item the two events are independent. On the other hand if

failure of one would alter the probability distribution of failure time of the

second item the two events of failure are dependent.

In probabilistic terms the above discussion can be summarized as follows.

A and B are independent if

and hence

P(BIA) = P(B)

P(AB) = P(BIA) P(A) ,, P(B) P(A),



whereP(BIA) is read "the probability of the event B given the event A has occurred."

Another consideration with respect to independence is that of statistical

independence and conditional independence which has been denoted as physical

independence in Ref. 54.

Two events A and B are said to be conditionally (physically) independent if

and only if they are statistically independent under environment Ei' that is,

P(XYIEI) = P(X[Ei) P(Y[E i)

Physlcal (conditional) independence does not necessarily imply statistical independence

of the unconditional events X and Y. In order to compute the reliability of a system

one usu@lly obtains the conditional probabilities (that is, given the environments)

and then obtains the weighted average of these conditional probabilities using the

P(E i) as the weights. In mathematical terms

P(XY) = [ P(XYIEi) P(Ei) ,
i

or

P(XY) = _ P(XIEi) P(YIEi) P(Ei).
i

Frequently in reliability prediction the mission is subdivided into phases in each

of which the environment is essentially constant throughout the entire phase. Hence

one uses a formula such as the above. A more complete discussion of the concepts of

physical and statistical independence appears in Ref. 48 and Ref. 54.
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Table A. 4-i

Calculus of Probabilities

io

2.

3.

4.

5.

6.

7.

2.

3.

4.

5,

6.

,

8,

Definitions and Axioms

P(A) = Probability of A

0 < P(A) < 1

P(Sure Event) _ P(1) = i

P(An Impossible Event) = P(_)

P(A+B) = P(A) + P(B) - P(AB)

P(BIA)

P(AB)

-- 0

= Probability of B on the hypothesis that A has occurred

= P(A) P(BIA)

Theorems

P(A+A) = P(A) + P(A--) = 1

P(A) = P(AB) + P(AB)

P(A+B) = i - P(AB)

P(AI+A2+ -.. +An) = P(AI) + P(A2) + ... + P(An)

- P(AIA2) - P(AIA3) ..... P(An_IA n)

+ P(AIA2A 3) + ...

+ (-1) n-I P(AIA 2 "'' An)

P(AIA 2 ..- An) = P(AI) P(A2IA I) P(A3IAIA 2) "-- P(AnIA 1 "-" An_ 1 )

If A I, •'- , An are all mutually independent events, then

n

P(AIA 2 "'" A n ) = E P(A i)
i=l

If A I, "'', An are pairwise mutually exclusive i.e. AiA i = _ (null set)

for all pairs i, J = i, ..., n, i # J, then

n

P(AI+A 2 + ... + An ) " [ P(Ai)"
i=l

Bayes Rule - Let BI, B2, .-. be a collection of events which are mutually

exclusive and exhaustive, i.e. B i • Bj

then

= _ for i # J, and B I + B 2 + .... I,

P(Bi IA) P(A)

P(BiA) P(AIBi ) P(Bi)

= - rP(AIBi) P(Bi)
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Example

Consider the system reliability logic diagram shown below where the

symbols assigned to each element represent the event of success for that
element.

kq1 1

Let the associated probabilities be P(A) = P(BI) = P(B2) = 0.95,

P(C) = 0.98, P(D) = 0.90, P(EI) = P(E 2) = 0.90.

Let P1 denote the path A, B 1

P2 A, B 2

P3 C, D

P4 C, El, E2.

Then the probability of success is the probability that at least one of the

paths PI' "''' P4 is "good", that is,

P(S) = P{PI + P2 + P3 + P4 }

= P(PI } + P{P2 } + P{P3} + P{P4 }

- P(PIP2 } - P{PIP3} - P(PIP4} - P{P2P3 }

- P(P3P4 } - P{P2P4 }

+ P{PIP2P3 } + P{PIP2P4} + P{PIP3P4 } + P(P2P3P4}

- P{PIP2P3P4}.
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Now P{PI } = P{AB I} = P{A} P{B I} assuming independence of the events A and B I, hence

P{PI } = (0.95)(0.95) = 0.9025

Similarly the remaining probabilities are obtained.

P{P2 } -- 0.9025

P{P3 } = 0.8820

P{P4 } = 0.7938

p{piP2 } = P{ABIAB 2} = P{ABIB 2} = 0.8574

p{pIP3 } -- P{ABICD} = 0.7960

p{p2P3} = P{AB2CD} = 0.7960

p{p2P4} = P(ABICEIE 2} = 0.7164

p{pIP4} = P{ABICEIE 2} = 0.7164

p{p3P4 } = P{CDCEIE 2} = 0.7144

p{piP2P3} = P{ABIAB2CD} = P{ABIB2CD} = 0.7562

p{piP2P4 } = P{ABIAB2CEIE 2 } = P[ABIB2CEIE 2 } = 0.6806

p{piP3P4 } = P{ABICDCEIE2} -- P{ABICDEIE 2} = 0.6448

p{p2P3P4 } = P{AB2CDCEIE 2} = P{AB2CDEIE 2} = 0.6448

P {PIP2P3P4 } = 0.6125

Hence

P{S} = 0.9981.

It should be noted that a particular kind of system redundancy is implied for the

success probability to be computed in the above way. Specifically, independence is

required of all failure events, which usually implies active redundancy in the system.

A computer program for performing a reliability prediction such as that above is

described in Vol. II - Computation.
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A.5 Boolean Algebra

In predicting the reliability of a system we are concerned with various events,

such as a performance measure lies between two given values, no failures in an

interval of time t, less than three defects in a sample of ten items from a lot of

material, etc. Such events will be devoted by capital letters A, B, C, etc. An

event is the result of an experiment and can be considered to be a collection of

possible outcomes of an experiment within the space of all possible outcomes. For

example, the selection of three or more good items from a lot of five items is an

event. The space of all possible outcomes contains 25 = 32 points in the sample

space, correspond to all items bad, only one item good (5 points), two items good

(I0 points) , etc., ..., five items good (i point). The event of three or more

good items corresponds to 16 of these 32 sample points. The basic definitions,

operations, and properties of Boolean Algebra are summarized in Table A. 5-1. This

summary covers only those introductory topics included in the first few chapters of

a text on the subject. Ref. 37 gives a complete discussion of Boolean Algebra and

its applications.

Example

Simplify the following expression:

[(_) + c] (A+C)

Applying the dualizatlon law,

[(A+B) + C] (AC).

The distributive law yields

(A--CA) + (A--CB)+ (ACC)

or

which is

+ (A--CB)+ (AC)

(A--CB) + (AC).

Slnce ACBCCAC, the above is equivalent to AC.
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Table A. 5-1

Boolean Algebra

(Algebra of Classes)

Notation, Definitions, and Logical Operations:

1. A sure event, an event which always occurs when an experiment or observation

is made, denoted by I.

2. An impossible event, an event which never occurs as an outcome of an experiment,

denoted by _.

3,

4.

.

The complementarz event or complement of A, is the event that A does not occur,

denoted by A.

The sum or union of A and B, denoted by A + B or A U B, is the event that at

least one of A and B occurs.

The product or intersection of A and B, denoted by AB or A N B is the event

that both A and B occur.

6. If occurrence of B implies the occurrence of A, then B C A.

7. If AB = #, then A and B are disjoint.

Let F0 be a family of events which includes I and which is used with respect

to the sum and product logical operations. Then events belonging to the field _O

satisfy the following relations:

A + AA = AA = A

A + B = B + A, AB = BA

(A+B+C) = A + (B+C), (AB)C

A(B+C) = AB + AC

A + A = I, AA =

A + I = I, AI = A

A + _ = A, A_ = _.

= A(BC)

Dualization Laws:

A+ B = AB

AB = A+B.
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